Suppr超能文献

从聚焦发射波束中恢复完整数据集。

Recovery of the Complete Data Set From Focused Transmit Beams.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jan;65(1):30-38. doi: 10.1109/TUFFC.2017.2773495.

Abstract

The focused transmit beam is a standard tool for clinical ultrasound scanning, concentrating energy from a number of array elements toward an imaging target. However, above and below the transmit focus, much of the energy in the beam is spread in a broadened main lobe and long off-axis tails that are ignored by conventional beamforming methods. This paper proposes a method to decompose a set of focused transmit beams into their constituent components-diverging waves from individual array elements. The recovery of this complete data set enables synthetic transmit focusing at all points in the field of view without beam shape or focal depth artifacts commonly associated with virtual source synthetic aperture beamforming. An efficient frequency-domain linear decoding implementation is introduced. The principles of the method are demonstrated both in transmit field simulations and experimental imaging. At depth, up to a 9.6-dB improvement in electronic signal-to-noise ratio and 8.9-dB improvement in contrast were observed in comparison with conventional dynamic receive beamforming. The proposed method is broadly applicable to existing scan sequences and requires only channel data for processing.

摘要

聚焦发射波束是临床超声扫描的标准工具,它将来自多个阵列元件的能量集中到成像目标上。然而,在发射焦点的上方和下方,波束中的大部分能量在扩展的主瓣和长轴外尾部中扩散,这些能量被传统的波束形成方法忽略了。本文提出了一种将一组聚焦发射波束分解为其组成部分的方法,即来自各个阵列元件的发散波。恢复这个完整的数据集可以在视场中的所有点进行合成发射聚焦,而不会出现与虚拟源合成孔径波束形成相关的波束形状或焦点深度伪影。引入了一种高效的频域线性解码实现方法。该方法的原理在发射场模拟和实验成像中都得到了验证。在深度上,与传统的动态接收波束形成相比,电子信噪比提高了 9.6dB,对比度提高了 8.9dB。所提出的方法广泛适用于现有的扫描序列,并且仅需要通道数据进行处理。

相似文献

1
Recovery of the Complete Data Set From Focused Transmit Beams.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jan;65(1):30-38. doi: 10.1109/TUFFC.2017.2773495.
2
F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jan;63(1):60-71. doi: 10.1109/TUFFC.2015.2499839. Epub 2015 Nov 11.
3
Sequential beamforming for synthetic aperture imaging.
Ultrasonics. 2013 Jan;53(1):1-16. doi: 10.1016/j.ultras.2012.06.006. Epub 2012 Jun 28.
4
Dual stage beamforming in the absence of front-end receive focusing.
Phys Med Biol. 2017 Jul 31;62(16):6631-6648. doi: 10.1088/1361-6560/aa78df.
6
Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
Ultrason Imaging. 2017 Jul;39(4):224-239. doi: 10.1177/0161734616688328. Epub 2017 Jan 9.
8
A new synthetic aperture focusing method to suppress the diffraction of ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Feb;58(2):327-37. doi: 10.1109/TUFFC.2011.1810.
9
Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1166-1177. doi: 10.1109/TUFFC.2020.2966116. Epub 2020 Jan 13.
10
Comparison of virtual source synthetic aperture beamforming with an element-based model.
J Acoust Soc Am. 2018 May;143(5):2801. doi: 10.1121/1.5036733.

引用本文的文献

1
Improving real-time ultrasound spine imaging with a large-aperture array.
Sci Adv. 2025 Jul 25;11(30):eadw2601. doi: 10.1126/sciadv.adw2601.
2
Improved Spatiotemporal Resolution in Echocardiography Using Mixed Geometry Imaging Sequences.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Apr;71(4):438-447. doi: 10.1109/TUFFC.2024.3364051. Epub 2024 Mar 28.
3
Large-Array Deep Abdominal Imaging in Fundamental and Harmonic Mode.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 May;70(5):406-421. doi: 10.1109/TUFFC.2023.3255800. Epub 2023 Apr 26.
4
Separation of mainlobe and sidelobe contributions to B-mode ultrasound images based on the aperture spectrum.
J Med Imaging (Bellingham). 2022 Nov;9(6):067001. doi: 10.1117/1.JMI.9.6.067001. Epub 2022 Nov 1.
6
Angular spectrum method for curvilinear arrays: Theory and application to Fourier beamforming.
JASA Express Lett. 2022 May;2(5):052001. doi: 10.1121/10.0010536. Epub 2022 May 13.
8
Pixel-Oriented Adaptive Apodization for Plane-Wave Imaging Based on Recovery of the Complete Dataset.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Feb;69(2):512-522. doi: 10.1109/TUFFC.2021.3124821. Epub 2022 Jan 27.
9
Reverberation Clutter Suppression Using 2-D Spatial Coherence Analysis.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jan;69(1):84-97. doi: 10.1109/TUFFC.2021.3108059. Epub 2021 Dec 31.
10
Fourier-based Synthetic-aperture Imaging for Arbitrary Transmissions by Cross-correlation of Transmitted and Received Wave-fields.
Ultrason Imaging. 2021 Sep;43(5):282-294. doi: 10.1177/01617346211026350. Epub 2021 Jul 8.

本文引用的文献

1
Pseudoinverse Decoding Process in Delay-Encoded Synthetic Transmit Aperture Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Sep;63(9):1372-1379. doi: 10.1109/TUFFC.2016.2578952. Epub 2016 Jun 9.
2
High-Resolution Ultrasound Imaging With Unified Pixel-Based Beamforming.
IEEE Trans Med Imaging. 2016 Jan;35(1):98-108. doi: 10.1109/TMI.2015.2456982.
3
Delay-encoded transmission and image reconstruction method in synthetic transmit aperture imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Oct;62(10):1745-56. doi: 10.1109/TUFFC.2015.007005.
4
S-sequence spatially-encoded synthetic aperture ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 May;61(5):886-90. doi: 10.1109/TUFFC.2014.6805701.
5
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
6
Adaptive multi-element synthetic aperture imaging with motion and phase aberration correction.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(4):1077-87. doi: 10.1109/58.710591.
7
Speckle decorrelation due to two-dimensional flow gradients.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(2):317-27. doi: 10.1109/58.660142.
8
Synthetic aperture techniques with a virtual source element.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(1):196-207. doi: 10.1109/58.646925.
9
A study of synthetic-aperture imaging with virtual source elements in B-mode ultrasound imaging systems.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(6):1510-9. doi: 10.1109/58.883540.
10
Space-time encoding for high frame rate ultrasound imaging.
Ultrasonics. 2002 May;40(1-8):593-7. doi: 10.1016/s0041-624x(02)00179-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验