Suppr超能文献

桥接相互作用使钙调蛋白能够通过双模态机制激活一氧化氮合酶。

A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism.

机构信息

Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA.

出版信息

J Biol Chem. 2010 Aug 20;285(34):25941-9. doi: 10.1074/jbc.M110.126797. Epub 2010 Jun 7.

Abstract

Calmodulin (CaM) activates the nitric-oxide synthases (NOS) by a mechanism that is not completely understood. A recent crystal structure showed that bound CaM engages in a bridging interaction with the NOS FMN subdomain. We investigated its importance in neuronal NOS (nNOS) by mutating the two residues that primarily create the bridging interaction (Arg(752) in the FMN subdomain and Glu(47) in CaM). Mutations designed to completely destroy the bridging interaction prevented bound CaM from increasing electron flux through the FMN subdomain and diminished the FMN-to-heme electron transfer by 90%, whereas mutations that partly preserve the interaction had intermediate effects. The bridging interaction appeared to control FMN subdomain interactions with both its electron donor (NADPH-FAD subdomain) and electron acceptor (heme domain) partner subdomains in nNOS. We conclude that the Arg(752)-Glu(47) bridging interaction is the main feature that enables CaM to activate nNOS. The mechanism is bi-modal and links a single structural aspect of CaM binding to specific changes in nNOS protein conformational and electron transfer properties that are essential for catalysis.

摘要

钙调蛋白(CaM)通过一种尚未完全阐明的机制激活一氧化氮合酶(NOS)。最近的晶体结构表明,结合的 CaM 与 NOS FMN 亚结构域进行桥接相互作用。我们通过突变主要形成桥接相互作用的两个残基(FMN 亚结构域中的精氨酸(Arg752)和 CaM 中的谷氨酸(Glu47))来研究其在神经元型 NOS(nNOS)中的重要性。旨在完全破坏桥接相互作用的突变阻止结合的 CaM 增加 FMN 亚结构域中的电子流,并使 FMN 到血红素的电子转移减少 90%,而部分保留相互作用的突变则具有中间效应。桥接相互作用似乎控制 FMN 亚结构域与 nNOS 中其电子供体(NADPH-FAD 亚结构域)和电子受体(血红素结构域)伴侣亚结构域的相互作用。我们得出结论,Arg752-Glu47 桥接相互作用是 CaM 激活 nNOS 的主要特征。该机制是双模态的,将 CaM 结合的单个结构方面与 nNOS 蛋白构象和电子转移特性的特定变化联系起来,这些变化对于催化至关重要。

相似文献

1
A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism.
J Biol Chem. 2010 Aug 20;285(34):25941-9. doi: 10.1074/jbc.M110.126797. Epub 2010 Jun 7.
2
4
C-terminal tail residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric-oxide synthase.
J Biol Chem. 2005 Nov 25;280(47):39208-19. doi: 10.1074/jbc.M507775200. Epub 2005 Sep 8.
8
Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase.
Biochemistry. 2009 May 12;48(18):3864-76. doi: 10.1021/bi8021087.
10

引用本文的文献

1
Compressive Force Activation of the Neuronal Nitric Oxide Synthase Enzyme.
ACS Omega. 2025 Aug 22;10(35):39823-39832. doi: 10.1021/acsomega.5c03891. eCollection 2025 Sep 9.
3
Unbiased proteomics identifies plasminogen activator inhibitor-1 as a negative regulator of endothelial nitric oxide synthase.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9497-9507. doi: 10.1073/pnas.1918761117. Epub 2020 Apr 16.
5
Nitric oxide synthase enzymology in the 20 years after the Nobel Prize.
Br J Pharmacol. 2019 Jan;176(2):177-188. doi: 10.1111/bph.14533. Epub 2018 Dec 9.
6
Role of an isoform-specific residue at the calmodulin-heme (NO synthase) interface in the FMN - heme electron transfer.
FEBS Lett. 2018 Jul;592(14):2425-2431. doi: 10.1002/1873-3468.13158. Epub 2018 Jun 29.
7
Deciphering mechanism of conformationally controlled electron transfer in nitric oxide synthases.
Front Biosci (Landmark Ed). 2018 Jun 1;23(10):1803-1821. doi: 10.2741/4674.
8
A cross-domain charge interaction governs the activity of NO synthase.
J Biol Chem. 2018 Mar 23;293(12):4545-4554. doi: 10.1074/jbc.RA117.000635. Epub 2018 Feb 2.
10
Tetrahydrobiopterin redox cycling in nitric oxide synthase: evidence supports a through-heme electron delivery.
FEBS J. 2016 Dec;283(24):4491-4501. doi: 10.1111/febs.13933. Epub 2016 Nov 18.

本文引用的文献

1
Nitric Oxide: Chemical Puzzles Posed by a Biological Messenger.
Angew Chem Int Ed Engl. 1999 Jun 14;38(12):1714-1731. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1714::AID-ANIE1714>3.0.CO;2-3.
3
Space, time and nitric oxide--neuronal nitric oxide synthase generates signal pulses.
FEBS J. 2009 Nov;276(22):6677-88. doi: 10.1111/j.1742-4658.2009.07382.x. Epub 2009 Oct 16.
4
Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase.
J Biol Chem. 2009 Oct 30;284(44):30708-17. doi: 10.1074/jbc.M109.031682. Epub 2009 Sep 8.
5
Regulation of interdomain electron transfer in the NOS output state for NO production.
Dalton Trans. 2009 Sep 14(34):6692-700. doi: 10.1039/b902884f. Epub 2009 Jun 17.
6
Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain.
FEBS J. 2009 Aug;276(15):3959-74. doi: 10.1111/j.1742-4658.2009.07120.x. Epub 2009 Jul 3.
8
Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase.
Biochemistry. 2009 May 12;48(18):3864-76. doi: 10.1021/bi8021087.
9
Intraprotein electron transfer in inducible nitric oxide synthase holoenzyme.
J Biol Inorg Chem. 2009 Jan;14(1):133-42. doi: 10.1007/s00775-008-0431-2. Epub 2008 Oct 2.
10
Importance of the domain-domain interface to the catalytic action of the NO synthase reductase domain.
Biochemistry. 2008 Sep 16;47(37):9771-80. doi: 10.1021/bi800787m. Epub 2008 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验