Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
J Biol Chem. 2010 Jan 29;285(5):3064-75. doi: 10.1074/jbc.M109.000810. Epub 2009 Nov 30.
Neuronal nitric-oxide synthase (nNOS) contains a unique autoinhibitory insert (AI) in its FMN subdomain that represses nNOS reductase activities and controls the calcium sensitivity of calmodulin (CaM) binding to nNOS. How the AI does this is unclear. A conserved charged residue (Lys(842)) lies within a putative CaM binding helix in the middle of the AI. We investigated its role by substituting residues that neutralize (Ala) or reverse (Glu) the charge at Lys(842). Compared with wild type nNOS, the mutant enzymes had greater cytochrome c reductase and NADPH oxidase activities in the CaM-free state, were able to bind CaM at lower calcium concentration, and had lower rates of heme reduction and NO synthesis in one case (K842A). Moreover, stopped-flow spectrophotometric experiments with the nNOS reductase domain indicate that the CaM-free mutants had faster flavin reduction kinetics and had less shielding of their FMN subdomains compared with wild type and no longer increased their level of FMN shielding in response to NADPH binding. Thus, Lys(842) is critical for the known functions of the AI and also enables two additional functions of the AI as newly identified here: suppression of electron transfer to FMN and control of the conformational equilibrium of the nNOS reductase domain. Its effect on the conformational equilibrium probably explains suppression of catalysis by the AI.
神经元型一氧化氮合酶 (nNOS) 的黄素单核苷酸 (FMN) 结构域中含有独特的自动抑制插入序列 (AI),它可以抑制 nNOS 还原酶的活性,并控制钙调蛋白 (CaM) 与 nNOS 结合的钙敏感性。但 AI 如何做到这一点尚不清楚。一个保守的带电残基 (Lys(842)) 位于 AI 中部的一个假定的 CaM 结合螺旋内。我们通过取代中和 (Ala) 或反转 (Glu) Lys(842) 电荷的残基来研究其作用。与野生型 nNOS 相比,突变酶在无 CaM 状态下具有更高的细胞色素 c 还原酶和 NADPH 氧化酶活性,能够在较低的钙离子浓度下结合 CaM,并且在一种情况下 (K842A) 具有较低的血红素还原和 NO 合成速率。此外,用 nNOS 还原酶结构域进行的停流分光光度实验表明,无 CaM 的突变体具有更快的黄素还原动力学,并且与野生型相比,其 FMN 结构域的屏蔽作用较小,并且不再响应 NADPH 结合而增加其 FMN 屏蔽水平。因此,Lys(842) 对于 AI 的已知功能至关重要,并且还使 AI 的另外两个功能成为新发现的功能:抑制 FMN 的电子转移和控制 nNOS 还原酶结构域的构象平衡。它对构象平衡的影响可能解释了 AI 对催化的抑制作用。