Suppr超能文献

用于长时间尺度蛋白质运动的马尔可夫动力学模型。

Markov dynamic models for long-timescale protein motion.

机构信息

Department of Computer Science, National University of Singapore, Singapore 117417, Singapore.

出版信息

Bioinformatics. 2010 Jun 15;26(12):i269-77. doi: 10.1093/bioinformatics/btq177.

Abstract

Molecular dynamics (MD) simulation is a well-established method for studying protein motion at the atomic scale. However, it is computationally intensive and generates massive amounts of data. One way of addressing the dual challenges of computation efficiency and data analysis is to construct simplified models of long-timescale protein motion from MD simulation data. In this direction, we propose to use Markov models with hidden states, in which the Markovian states represent potentially overlapping probabilistic distributions over protein conformations. We also propose a principled criterion for evaluating the quality of a model by its ability to predict long-timescale protein motions. Our method was tested on 2D synthetic energy landscapes and two extensively studied peptides, alanine dipeptide and the villin headpiece subdomain (HP-35 NleNle). One interesting finding is that although a widely accepted model of alanine dipeptide contains six states, a simpler model with only three states is equally good for predicting long-timescale motions. We also used the constructed Markov models to estimate important kinetic and dynamic quantities for protein folding, in particular, mean first-passage time. The results are consistent with available experimental measurements.

摘要

分子动力学(MD)模拟是研究蛋白质原子尺度运动的一种成熟方法。然而,它的计算量很大,会生成大量的数据。解决计算效率和数据分析双重挑战的一种方法是从 MD 模拟数据中构建长时间尺度蛋白质运动的简化模型。在这个方向上,我们提出使用具有隐藏状态的马尔可夫模型,其中马尔可夫状态表示蛋白质构象的潜在重叠概率分布。我们还提出了一种通过其预测长时间尺度蛋白质运动的能力来评估模型质量的有原则的标准。我们的方法在 2D 合成能量景观和两个经过广泛研究的肽(丙氨酸二肽和 villin 头部片段(HP-35 NleNle))上进行了测试。一个有趣的发现是,尽管丙氨酸二肽的一个被广泛接受的模型包含六个状态,但一个只有三个状态的更简单的模型对于预测长时间尺度的运动同样有效。我们还使用构建的马尔可夫模型来估计蛋白质折叠的重要动力学和动态量,特别是平均首次通过时间。结果与现有的实验测量一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15c8/2881362/0323db0e179c/btq177f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验