Suppr超能文献

caveolin-3 缺失与 P104L 突变相关的肌营养不良症会损害骨骼肌线粒体的形态和功能。

Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function.

机构信息

Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK.

Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Homburg, Germany.

出版信息

J Cachexia Sarcopenia Muscle. 2020 Jun;11(3):838-858. doi: 10.1002/jcsm.12541. Epub 2020 Feb 23.

Abstract

BACKGROUND

Caveolin-3 (Cav3) is the principal structural component of caveolae in skeletal muscle. Dominant pathogenic mutations in the Cav3 gene, such as the Limb Girdle Muscular Dystrophy-1C (LGMD1C) P104L mutation, result in substantial loss of Cav3 and myopathic changes characterized by muscle weakness and wasting. We hypothesize such myopathy may also be associated with disturbances in mitochondrial biology. Herein, we report studies assessing the effects of Cav3 deficiency on mitochondrial form and function in skeletal muscle cells.

METHODS

L6 myoblasts were stably transfected with Cav3 or expression of native Cav3 repressed by shRNA or CRISPR/Cas9 genome editing prior to performing fixed/live cell imaging of mitochondrial morphology, subcellular fractionation and immunoblotting, or analysis of real time mitochondrial respiration. Skeletal muscle from wild-type and Cav3 mice was processed for analysis of mitochondrial proteins by immunoblotting.

RESULTS

Caveolin-3 was detected in mitochondrial-enriched membranes isolated from mouse gastrocnemius muscle and L6 myoblasts. Expression of Cav3 in L6 myoblasts led to its targeting to the Golgi and loss of native Cav3 (>95%), including that associated with mitochondrial membranes. Cav3 reduced mitochondrial mass and induced fragmentation of the mitochondrial network that was associated with significant loss of proteins involved in mitochondrial biogenesis, respiration, morphology, and redox function [i.e. PGC1α, succinate dehyrdogenase (SDHA), ANT1, MFN2, OPA1, and MnSOD). Furthermore, Cav3 myoblasts exhibited increased mitochondrial cholesterol and loss of cardiolipin. Consistent with these changes, Cav3 expression reduced mitochondrial respiratory capacity and increased myocellular superoxide production. These morphological, biochemical, and functional mitochondrial changes were phenocopied in myoblasts in which Cav3 had been silenced/knocked-out using shRNA or CRISPR. Reduced mitochondrial mass, PGC1α, SDHA, ANT1, and MnSOD were also demonstrable in Cav3 mouse gastrocnemius. Strikingly, Cav3 re-expression in Cav3KO myoblasts restored its mitochondrial association and facilitated reformation of a tubular mitochondrial network. Significantly, re-expression also mitigated changes in mitochondrial superoxide, cholesterol, and cardiolipin content and recovered cellular respiratory capacity.

CONCLUSIONS

Our results identify Cav3 as an important regulator of mitochondrial homeostasis and reveal that Cav3 deficiency in muscle cells associated with the Cav3 mutation invokes major disturbances in mitochondrial respiration and energy status that may contribute to the pathology of LGMD1C.

摘要

背景

窖蛋白-3(Cav3)是骨骼肌中质膜微囊的主要结构成分。Cav3 基因的显性致病突变,如肢带型肌营养不良 1C(LGMD1C)P104L 突变,导致 Cav3 大量丢失,并伴有肌肉无力和萎缩为特征的肌病变化。我们假设这种肌病也可能与线粒体生物学的紊乱有关。在此,我们报告了 Cav3 缺乏对骨骼肌细胞中线粒体形态和功能影响的研究。

方法

L6 成肌细胞经 Cav3 稳定转染或用 shRNA 或 CRISPR/Cas9 基因组编辑抑制 Cav3 的天然表达,然后进行线粒体形态的固定/活细胞成像、亚细胞分级分离和免疫印迹分析,或实时线粒体呼吸分析。野生型和 Cav3 小鼠的骨骼肌经免疫印迹分析用于分析线粒体蛋白。

结果

在从小鼠比目鱼肌和 L6 成肌细胞分离的富含线粒体的膜中检测到窖蛋白-3。Cav3 在 L6 成肌细胞中的表达导致其靶向高尔基体,并丢失天然 Cav3(>95%),包括与线粒体膜相关的 Cav3。Cav3 减少线粒体质量并诱导线粒体网络的碎片化,这与涉及线粒体生物发生、呼吸、形态和氧化还原功能的蛋白质的显著丢失有关[即 PGC1α、琥珀酸脱氢酶(SDHA)、ANT1、MFN2、OPA1 和 MnSOD)。此外,Cav3 成肌细胞的线粒体胆固醇增加,心磷脂丢失。与这些变化一致,Cav3 表达降低了线粒体呼吸能力并增加了肌细胞中超氧自由基的产生。在用 shRNA 或 CRISPR 沉默/敲除 Cav3 的成肌细胞中,也出现了 Cav3 的这些形态、生化和功能的线粒体变化。在 Cav3 小鼠比目鱼肌中也证明了 Cav3 减少了线粒体质量、PGC1α、SDHA、ANT1 和 MnSOD。引人注目的是,Cav3 在 Cav3KO 成肌细胞中的重新表达恢复了其与线粒体的关联,并促进了管状线粒体网络的重新形成。重要的是,重新表达还减轻了线粒体超氧自由基、胆固醇和心磷脂含量的变化,并恢复了细胞呼吸能力。

结论

我们的研究结果将 Cav3 鉴定为线粒体动态平衡的重要调节剂,并揭示了与 Cav3 基因突变相关的肌肉细胞中 Cav3 的缺乏会引起线粒体呼吸和能量状态的重大紊乱,这可能导致 LGMD1C 的病理学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验