Department of Computer Science, Stanford University, Stanford, CA 94305-9010, USA.
Mol Syst Biol. 2010 Jun 8;6:379. doi: 10.1038/msb.2010.27.
High-throughput quantitative genetic interaction (GI) measurements provide detailed information regarding the structure of the underlying biological pathways by reporting on functional dependencies between genes. However, the analytical tools for fully exploiting such information lag behind the ability to collect these data. We present a novel Bayesian learning method that uses quantitative phenotypes of double knockout organisms to automatically reconstruct detailed pathway structures. We applied our method to a recent data set that measures GIs for endoplasmic reticulum (ER) genes, using the unfolded protein response as a quantitative phenotype. The results provided reconstructions of known functional pathways including N-linked glycosylation and ER-associated protein degradation. It also contained novel relationships, such as the placement of SGT2 in the tail-anchored biogenesis pathway, a finding that we experimentally validated. Our approach should be readily applicable to the next generation of quantitative GI data sets, as assays become available for additional phenotypes and eventually higher-level organisms.
高通量定量遗传相互作用(GI)测量通过报告基因之间的功能依赖性,提供有关潜在生物学途径结构的详细信息。然而,充分利用此类信息的分析工具落后于收集这些数据的能力。我们提出了一种新的贝叶斯学习方法,该方法使用双敲除生物体的定量表型自动重建详细的途径结构。我们将我们的方法应用于最近的一个数据集,该数据集测量了内质网(ER)基因的 GI,使用未折叠蛋白反应作为定量表型。结果提供了已知功能途径的重建,包括 N-连接糖基化和 ER 相关蛋白降解。它还包含新的关系,例如 SGT2 在尾部锚定生物发生途径中的位置,这一发现我们通过实验验证。我们的方法应该可以轻松应用于下一代定量 GI 数据集,因为随着测定方法的出现,最终可以用于其他表型和更高水平的生物体。