Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
Lab Chip. 2010 Aug 21;10(16):2083-92. doi: 10.1039/b927153h. Epub 2010 Jun 9.
We describe the integrated use of pulsed laser microbeam irradiation and microfluidic cell culture methods to examine the dynamics of axonal injury and regeneration in vitro. Microfabrication methods are used to place high purity dissociated central nervous system neurons in specific regions that allow the axons to interact with permissive and inhibitory substrates. Acute injury to neuron bundles is produced via the delivery of single 180 ps duration, lambda = 532 nm laser pulses. Laser pulse energies of 400 nJ and 800 nJ produce partial and complete transection of the axons, respectively, resulting in elliptical lesions 25 mum and 50 mum in size. The dynamics of the resulting degeneration and regrowth of proximal and distal axonal segments are examined for up to 8 h using time-lapse microscopy. We find the proximal and distal dieback distances from the site of laser microbeam irradiation to be roughly equal for both partial and complete transection of the axons. In addition, distinct growth cones emerge from the proximal neurite segments within 1-2 h post-injury, followed by a uniform front of regenerating axons that originate from the proximal segment and traverse the injury site within 8 h. We also examine the use of EGTA to chelate the extracellular calcium and potentially reduce the severity of the axonal degeneration following injury. While we find the addition of EGTA to reduce the severity of the initial dieback, it also hampers neurite repair and interferes with the formation of neuronal growth cones to traverse the injury site. This integrated use of laser microbeam dissection within a micropatterned cell culture system to produce precise zones of neuronal injury shows potential for high-throughput screening of agents to promote neuronal regeneration.
我们描述了脉冲激光微束照射和微流控细胞培养方法的综合应用,以研究体外轴突损伤和再生的动力学。微加工方法用于将高纯度分离的中枢神经系统神经元放置在特定区域,使轴突与允许和抑制基质相互作用。通过传递单个持续时间为 180 ps、波长为 532nm 的激光脉冲来产生神经元束的急性损伤。激光脉冲能量为 400nJ 和 800nJ 分别产生轴突的部分和完全横断,导致大小为 25μm 和 50μm 的椭圆形损伤。使用延时显微镜,最多可在 8 小时内检查损伤后近端和远端轴突段的退化和再生的动力学。我们发现,对于轴突的部分和完全横断,从激光微束照射部位到近端和远端的退行距离大致相等。此外,在损伤后 1-2 小时内,从近端神经突段出现明显的生长锥,随后是起源于近端段并在 8 小时内穿过损伤部位的再生轴突的均匀前缘。我们还研究了使用 EGTA 螯合细胞外钙以潜在减少损伤后轴突退化的严重程度。虽然我们发现添加 EGTA 可以减轻初始退行的严重程度,但它也会妨碍神经突修复并干扰穿过损伤部位的神经元生长锥的形成。这种在微图案化细胞培养系统内使用激光微束切割来产生精确的神经元损伤区域的综合应用,显示了高通量筛选促进神经元再生的试剂的潜力。