Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
Essays Biochem. 2010;47:53-67. doi: 10.1042/bse0470053.
Mitochondrial proton and electron leak have a major impact on mitochondrial coupling efficiency and production of reactive oxygen species. In the first part of this chapter, we address the molecular nature of the basal and inducible proton leak pathways, and their physiological importance. The basal leak is unregulated, and a major proportion can be attributed to mitochondrial anion carriers, whereas the proton leak through the lipid bilayer appears to be minor. The basal proton leak is cell-type specific and correlates with metabolic rate. The inducible leak through the ANT (adenine nucleotide translocase) and UCPs (uncoupling proteins) can be activated by fatty acids, superoxide or lipid peroxidation products. The physiological role of inducible leak through UCP1 in mammalian brown adipose tissue is heat production, whereas the roles of non-mammalian UCP1 and its paralogous proteins, in particular UCP2 and UCP3, are not yet resolved. The second part of the chapter focuses on the electron leak that occurs in the mitochondrial electron transport chain. Exit of electrons prior to the reduction of oxygen to water at cytochrome c oxidase causes superoxide production. As the mechanisms of electron leak are crucial to understanding their physiological relevance, we summarize the mechanisms and topology of electron leak from complexes I and III in studies using isolated mitochondria. We also highlight recent progress and challenges of assessing electron leak in the living cell. Finally, we emphasize the importance of proton and electron leak as therapeutic targets in body mass regulation and insulin secretion.
线粒体质子和电子泄漏对线粒体偶联效率和活性氧的产生有重大影响。在本章的第一部分,我们探讨了基础和诱导质子泄漏途径的分子性质及其生理重要性。基础泄漏是无调节的,其中大部分可以归因于线粒体阴离子载体,而通过脂质双层的质子泄漏似乎较少。基础质子泄漏具有细胞类型特异性,并与代谢率相关。通过 ANT(腺嘌呤核苷酸转运蛋白)和 UCPs(解偶联蛋白)的诱导性泄漏可以被脂肪酸、超氧化物或脂质过氧化产物激活。哺乳动物棕色脂肪组织中 UCP1 诱导性泄漏的生理作用是产热,而非哺乳动物 UCP1 及其同源蛋白,特别是 UCP2 和 UCP3 的作用尚未确定。本章的第二部分重点介绍线粒体电子传递链中发生的电子泄漏。在细胞色素 c 氧化酶将氧气还原为水之前,电子的逸出会导致超氧化物的产生。由于电子泄漏的机制对于理解其生理相关性至关重要,因此我们总结了使用分离线粒体进行的复合物 I 和 III 中电子泄漏的机制和拓扑结构。我们还强调了在活细胞中评估电子泄漏的最新进展和挑战。最后,我们强调质子和电子泄漏作为体重调节和胰岛素分泌的治疗靶点的重要性。