Institute for Neuro- and Sensory Physiology, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11116-21. doi: 10.1073/pnas.0914233107. Epub 2010 Jun 1.
Cell adhesion molecules are key players in transsynaptic communication, precisely coordinating presynaptic differentiation with postsynaptic specialization. At glutamatergic synapses, their retrograde signaling has been proposed to control presynaptic vesicle clustering at active zones. However, how the different types of cell adhesion molecules act together during this decisive step of synapse maturation is largely unexplored. Using a knockout approach, we show that two synaptic adhesion systems, N-cadherin and neuroligin-1, cooperate to control vesicle clustering at nascent synapses. Live cell imaging and fluorescence recovery after photobleaching experiments at individual synaptic boutons revealed a strong impairment of vesicle accumulation in the absence of N-cadherin, whereas the formation of active zones was largely unaffected. Strikingly, also the clustering of synaptic vesicles triggered by neuroligin-1 overexpression required the presence of N-cadherin in cultured neurons. Mechanistically, we found that N-cadherin acts by postsynaptically accumulating neuroligin-1 and activating its function via the scaffolding molecule S-SCAM, leading, in turn, to presynaptic vesicle clustering. A similar cooperation of N-cadherin and neuroligin-1 was observed in immature CA3 pyramidal neurons in an organotypic hippocampal network. Moreover, at mature synapses, N-cadherin was required for the increase in release probability and miniature EPSC frequency induced by expressed neuroligin-1. This cooperation of two cell adhesion systems provides a mechanism for coupling bidirectional synapse maturation mediated by neuroligin-1 to cell type recognition processes mediated by classical cadherins.
细胞黏附分子是突触间通讯的关键参与者,它们能精确地协调突触前分化与突触后特化。在谷氨酸能突触中,其逆行信号被认为控制着突触前囊泡在活性区的聚集。然而,在突触成熟的这个决定性步骤中,不同类型的细胞黏附分子如何协同作用,在很大程度上仍未被探索。通过敲除方法,我们发现两种突触黏附系统,即 N-钙黏蛋白和神经钙黏蛋白-1,协同作用以控制新生突触处的囊泡聚集。在单个突触末梢的活细胞成像和光漂白后荧光恢复实验中,我们发现 N-钙黏蛋白缺失会严重损害囊泡的积累,而活性区的形成则基本不受影响。引人注目的是,神经钙黏蛋白-1过表达引发的突触囊泡聚集也需要 N-钙黏蛋白的存在。从机制上讲,我们发现 N-钙黏蛋白通过突触后积累神经钙黏蛋白-1并通过支架分子 S-SCAM 激活其功能,从而导致突触前囊泡聚集。在器官型海马网络中的未成熟 CA3 锥体神经元中,也观察到了 N-钙黏蛋白和神经钙黏蛋白-1的类似合作。此外,在成熟的突触中,N-钙黏蛋白对于由表达的神经钙黏蛋白-1诱导的释放概率和微小 EPSC 频率的增加是必需的。两种细胞黏附系统的这种合作提供了一种机制,用于将神经钙黏蛋白-1介导的双向突触成熟与经典钙黏蛋白介导的细胞类型识别过程相耦合。