Suppr超能文献

一种计算淡水环境中阳离子金属相对毒性潜能的新方法:在铜、镍和锌中的应用。

New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc.

机构信息

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.

出版信息

Environ Sci Technol. 2010 Jul 1;44(13):5195-201. doi: 10.1021/es903317a.

Abstract

Current practice in chemical hazard ranking and toxic impact assessments is to estimate fate and toxicity assuming the chemical exists in dissolved and particulate phases and, for metals, that all dissolved species are equally bioavailable. This introduces significant error since metal effects are related to the truly dissolved phase and free metal ion within it, not the total dissolved phase. We introduce a Bioavailability Factor (BF) to the calculation of hazard or Comparative Toxicity Potentials (CTPs) (also known as Characterization Factors; CFs) for use in Life Cycle Impact Assessment (LCIA). The method uses for calculation (1) USEtox for environmental fate, (2) WHAM 6.0 for metal partitioning and speciation in aquatic systems, and (3) Biotic Ligand Model (BLM) for average toxicity. For 12 EU water-types, we calculated medians (range) of CTPs of 1.5 x 10(4) (1.5 x 10(2) to 1.2 x 10(5)), 5.6 x 10(4) (9.4 x 10(3) to 4.1 x 10(5)), and 2.1 x 10(4) (7 x 10(3) to 5.8 x 10(4)) day*m(3)/kg for Cu, Ni, and Zn, respectively, which are up to approximately 1000 times lower than previous values. The greatest contributor to variability in CTPs was the BF, followed by toxicity Effect Factor (EF). The importance of the choice of water-type is shown by changes in the relative ranking of CTPs, which are equally influenced by water chemistry and inherent metal-specific differences.

摘要

目前,在化学危害分级和毒性影响评估中,通常假设化学物质存在于溶解态和颗粒态,并假定所有溶解态物种对金属的生物利用度均相同,以此来估算其归宿和毒性。这会引入显著的误差,因为金属效应与真正的溶解相和其中的游离金属离子有关,而不是总溶解相。我们引入了生物利用因子 (BF) 来计算危害或比较毒性潜能 (CTP)(也称为特征化因子;CF),用于生命周期影响评估 (LCIA)。该方法使用以下方法进行计算:(1) USEtox 用于环境归宿,(2) WHAM 6.0 用于水生系统中的金属分配和形态,以及 (3) 生物配体模型 (BLM) 用于平均毒性。对于 12 种欧盟水类型,我们计算了铜、镍和锌的 CTP 中位数(范围)分别为 1.5 x 10(4)(1.5 x 10(2) 至 1.2 x 10(5))、5.6 x 10(4)(9.4 x 10(3) 至 4.1 x 10(5))和 2.1 x 10(4)(7 x 10(3) 至 5.8 x 10(4))day*m(3)/kg,这比以前的值低了约 1000 倍。在 CTP 变异性中,BF 的贡献最大,其次是毒性效应因子 (EF)。水类型选择的重要性体现在 CTP 相对排序的变化上,水化学和固有金属特异性差异同样会影响 CTP 的相对排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验