Suppr超能文献

选定的有机磷农药的光转化:羟基和碳酸根自由基的作用。

Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicals.

机构信息

Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708-0287, USA.

出版信息

Water Res. 2010 Jun;44(12):3585-94. doi: 10.1016/j.watres.2010.04.011. Epub 2010 Apr 20.

Abstract

The phototransformation of two organophosphorus pesticides, parathion and chlorpyrifos, by hydroxyl radicals and carbonate radicals in aqueous solution were studied. Addition of hydrogen peroxide increased the UV degradation rates of both pesticides and data were simulated through kinetic modeling. The second-order rate constants of parathion and chlorpyrifos with hydroxyl radical were determined to be 9.7 +/- 0.5 x 10(9) and 4.9 +/- 0.1 x 10(9) M(-1) s(-1), respectively. The presence of bi/carbonate ions reduced the pesticide degradation rates via scavenging of hydroxyl radical but the formation of carbonate radical also contributed to the degradation of the pesticides with second-order reaction rate constants of 2.8 +/- 0.2 x 10(6) and 8.8 +/- 0.4 x 10(6) M(-1) s(-1) for parathion and chlorpyrifos, respectively. The dual roles of bicarbonate ion in UV/H2O2 treatment systems, i.e., scavenging of hydroxyl radicals and formation of carbonate radicals, were examined and discussed using a simulative kinetic model. The transformation of pesticides by carbonate radicals at environmentally relevant bi/carbonate concentrations was shown to be a significant contributor to the environmental fate of the pesticides and it reshaped the general phototransformation kinetics of both pesticides in UV/H2O2 systems.

摘要

羟基自由基和碳酸根自由基在水溶液中对两种有机磷农药(对硫磷和毒死蜱)的光转化进行了研究。添加过氧化氢会增加两种农药的紫外线降解速率,并通过动力学模型对数据进行模拟。对硫磷和毒死蜱与羟基自由基的二级反应速率常数分别确定为 9.7 ± 0.5 x 10(9) 和 4.9 ± 0.1 x 10(9) M(-1) s(-1)。生物/碳酸根离子的存在通过清除羟基自由基降低了农药的降解速率,但碳酸根自由基的形成也有助于农药的降解,其二级反应速率常数分别为 2.8 ± 0.2 x 10(6) 和 8.8 ± 0.4 x 10(6) M(-1) s(-1)。利用模拟动力学模型,考察并讨论了碳酸氢根离子在 UV/H2O2 处理系统中的双重作用,即清除羟基自由基和形成碳酸根自由基。研究表明,环境相关的生物/碳酸根浓度下,碳酸根自由基对农药的转化是农药环境归宿的重要因素,它改变了 UV/H2O2 体系中两种农药的一般光转化动力学。

相似文献

1
Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicals.
Water Res. 2010 Jun;44(12):3585-94. doi: 10.1016/j.watres.2010.04.011. Epub 2010 Apr 20.
3
Simulation and comparative study on the oxidation kinetics of atrazine by UV/H₂O₂, UV/HSO₅⁻ and UV/S₂O₈²⁻.
Water Res. 2015 Sep 1;80:99-108. doi: 10.1016/j.watres.2015.05.019. Epub 2015 May 12.
4
UV/HO advanced oxidation for abatement of organophosphorous pesticides and the effects on various toxicity screening assays.
Chemosphere. 2017 Sep;182:477-482. doi: 10.1016/j.chemosphere.2017.04.150. Epub 2017 May 2.
5
Kinetic studies of the AOP radical-based oxidative and reductive destruction of pesticides and model compounds in water.
Chemosphere. 2018 Apr;197:193-199. doi: 10.1016/j.chemosphere.2017.12.190. Epub 2017 Dec 30.
6
Reaction kinetics of dissolved black carbon with hydroxyl radical, sulfate radical and reactive chlorine radicals.
Sci Total Environ. 2022 Jul 1;828:153984. doi: 10.1016/j.scitotenv.2022.153984. Epub 2022 Feb 22.
7
Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process.
Chemosphere. 2001 Aug;44(5):1193-200. doi: 10.1016/s0045-6535(00)00278-2.
8
A comparison of fenuron degradation by hydroxyl and carbonate radicals in aqueous solution.
Water Res. 2007 Dec;41(20):4585-94. doi: 10.1016/j.watres.2007.06.066. Epub 2007 Jul 12.
9
Degradation and transformation of bisphenol A in UV/Sodium percarbonate: Dual role of carbonate radical anion.
Water Res. 2020 Mar 15;171:115394. doi: 10.1016/j.watres.2019.115394. Epub 2019 Dec 13.
10
Rate constants for the reaction of hydroxyl and sulfate radicals with organophosphorus esters (OPEs) determined by competition method.
Ecotoxicol Environ Saf. 2019 Apr 15;170:300-305. doi: 10.1016/j.ecoenv.2018.11.142. Epub 2018 Dec 7.

引用本文的文献

2
Enhanced removal of 1,2-dichloroethane by nanoscale calcium peroxide activation with Fe(III) coupled with different iron sulfides.
Water Sci Technol. 2024 Jul;90(1):384-397. doi: 10.2166/wst.2024.220. Epub 2024 Jun 25.
3
Degradation kinetics and mechanism of diclofenac by UV/peracetic acid.
RSC Adv. 2020 Mar 9;10(17):9907-9916. doi: 10.1039/d0ra00363h. eCollection 2020 Mar 6.
4
Advanced oxidation processes for chlorpyrifos removal from aqueous solution: a systematic review.
J Environ Health Sci Eng. 2021 May 10;19(1):1249-1262. doi: 10.1007/s40201-021-00674-1. eCollection 2021 Jun.
5
Transformation of antiviral ribavirin during ozone/PMS intensified disinfection amid COVID-19 pandemic.
Sci Total Environ. 2021 Oct 10;790:148030. doi: 10.1016/j.scitotenv.2021.148030. Epub 2021 May 27.
6
7
Gamma radiolytic decomposition of endosulfan in aerated solution: the role of carbonate radical.
Environ Sci Pollut Res Int. 2016 Jun;23(12):12362-71. doi: 10.1007/s11356-016-6415-9. Epub 2016 Mar 16.

本文引用的文献

1
Degradation and byproduct formation of parathion in aqueous solutions by UV and UV/H(2)O(2) treatment.
Water Res. 2008 Dec;42(19):4780-90. doi: 10.1016/j.watres.2008.08.023. Epub 2008 Sep 3.
2
A comparison of fenuron degradation by hydroxyl and carbonate radicals in aqueous solution.
Water Res. 2007 Dec;41(20):4585-94. doi: 10.1016/j.watres.2007.06.066. Epub 2007 Jul 12.
3
Photodegradation of metolachlor applying UV and UV/H2O2.
J Agric Food Chem. 2007 May 16;55(10):4059-65. doi: 10.1021/jf0635762. Epub 2007 Apr 21.
4
Degradation and by-product formation of diazinon in water during UV and UV/H(2)O(2) treatment.
J Hazard Mater. 2006 Aug 25;136(3):553-9. doi: 10.1016/j.jhazmat.2005.12.028. Epub 2006 Jan 24.
8
Evaluation of the efficiency of photodegradation of nitroaromatics applying the UV/H2O2 technique.
Environ Sci Technol. 2002 Sep 15;36(18):3936-44. doi: 10.1021/es0103039.
9
Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology.
Free Radic Biol Med. 2002 May 1;32(9):841-59. doi: 10.1016/s0891-5849(02)00786-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验