Suppr超能文献

一种非硫酸化的软骨素稳定了刺胞动物细胞器中的膜小管化。

A non-sulfated chondroitin stabilizes membrane tubulation in cnidarian organelles.

机构信息

Department of Molecular Evolution and Genomics, Institute of Zoology, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.

出版信息

J Biol Chem. 2010 Aug 13;285(33):25613-23. doi: 10.1074/jbc.M110.107904. Epub 2010 Jun 9.

Abstract

Membrane tubulation is generally associated with rearrangements of the cytoskeleton and other cytoplasmic factors. Little is known about the contribution of extracellular matrix components to this process. Here, we demonstrate an essential role of proteoglycans in the tubulation of the cnidarian nematocyst vesicle. The morphogenesis of this extrusive organelle takes place inside a giant post-Golgi vesicle, which topologically represents extracellular space. This process includes the formation of a complex collagenous capsule structure that elongates into a long tubule, which invaginates after its completion. We show that a non-sulfated chondroitin appears as a scaffold in early morphogenesis of all nematocyst types in Hydra and Nematostella. It accompanies the tubulation of the vesicle membrane forming a provisional tubule structure, which after invagination matures by collagen incorporation. Inhibition of chondroitin synthesis by beta-xylosides arrests nematocyst morphogenesis at different stages of tubule outgrowth resulting in retention of tubule material and a depletion of mature capsules in the tentacles of hydra. Our data suggest a conserved role of proteoglycans in the stabilization of a membrane protrusion as an essential step in organelle morphogenesis.

摘要

膜管化通常与细胞骨架和其他细胞质因子的重排有关。关于细胞外基质成分对此过程的贡献知之甚少。在这里,我们证明了糖胺聚糖在刺胞动物刺丝囊泡的管状化过程中的重要作用。这种外排细胞器的形态发生发生在一个巨大的高尔基体后囊泡内,该囊泡在拓扑上代表细胞外空间。这个过程包括形成一个复杂的胶原胶囊结构,该结构延伸成一个长管,在完成后内陷。我们表明,非硫酸软骨素在水螅和海鞘的所有刺丝囊类型的早期形态发生中作为支架出现。它伴随着囊泡膜的管状化形成一个临时的管状结构,该结构在内陷后通过胶原蛋白的掺入成熟。β-木糖苷对软骨素合成的抑制使刺丝囊形态发生在管状延伸的不同阶段停止,导致在水螅的触手中保留管状物质和成熟胶囊耗尽。我们的数据表明,糖胺聚糖在稳定膜突起中的保守作用是细胞器形态发生的一个重要步骤。

相似文献

1
A non-sulfated chondroitin stabilizes membrane tubulation in cnidarian organelles.
J Biol Chem. 2010 Aug 13;285(33):25613-23. doi: 10.1074/jbc.M110.107904. Epub 2010 Jun 9.
2
The cnidarian nematocyst: a miniature extracellular matrix within a secretory vesicle.
Protoplasma. 2011 Oct;248(4):635-40. doi: 10.1007/s00709-010-0219-4. Epub 2010 Oct 19.
5
Poly-gamma-glutamate synthesis during formation of nematocyst capsules in Hydra.
J Cell Sci. 2002 Feb 15;115(Pt 4):745-51. doi: 10.1242/jcs.115.4.745.
6
Proteome of Hydra nematocyst.
J Biol Chem. 2012 Mar 23;287(13):9672-9681. doi: 10.1074/jbc.M111.328203. Epub 2012 Jan 30.
7
The glycoprotein NOWA and minicollagens are part of a disulfide-linked polymer that forms the cnidarian nematocyst wall.
J Biol Chem. 2004 Dec 10;279(50):52016-23. doi: 10.1074/jbc.M407613200. Epub 2004 Oct 4.
8
Structure/function analysis of spinalin, a spine protein of Hydra nematocysts.
FEBS J. 2006 Jul;273(14):3230-7. doi: 10.1111/j.1742-4658.2006.05331.x. Epub 2006 Jun 15.
9
The development of the cnidoblasts of Hydra; an electron microscope study of cell differentiation.
J Biophys Biochem Cytol. 1959 May 25;5(3):441-52. doi: 10.1083/jcb.5.3.441.

引用本文的文献

1
An ancient pan-cnidarian microRNA regulates stinging capsule biogenesis in Nematostella vectensis.
Cell Rep. 2023 Sep 26;42(9):113072. doi: 10.1016/j.celrep.2023.113072. Epub 2023 Sep 6.
2
Non-muscle myosin II drives critical steps of nematocyst morphogenesis.
iScience. 2023 Feb 28;26(3):106291. doi: 10.1016/j.isci.2023.106291. eCollection 2023 Mar 17.
3
The Involvement of Cell-Type-Specific Glycans in Temporary Adhesion Revealed by a Lectin Screen.
Biomimetics (Basel). 2022 Oct 15;7(4):166. doi: 10.3390/biomimetics7040166.
4
A novel cytoskeletal action of xylosides.
PLoS One. 2022 Jun 28;17(6):e0269972. doi: 10.1371/journal.pone.0269972. eCollection 2022.
5
The architecture and operating mechanism of a cnidarian stinging organelle.
Nat Commun. 2022 Jun 17;13(1):3494. doi: 10.1038/s41467-022-31090-0.
6
Pseudocnidae of ribbon worms (Nemertea): ultrastructure, maturation, and functional morphology.
PeerJ. 2021 Feb 18;9:e10912. doi: 10.7717/peerj.10912. eCollection 2021.
9
Mechanisms of cnidocyte development in the moon jellyfish Aurelia.
Evol Dev. 2019 Mar;21(2):72-81. doi: 10.1111/ede.12278. Epub 2019 Jan 8.
10
, but not , is required for cnidocyte development in the sea anemone .
Evodevo. 2017 Sep 4;8:14. doi: 10.1186/s13227-017-0077-7. eCollection 2017.

本文引用的文献

1
The Hydra polyp: nothing but an active stem cell community.
Dev Growth Differ. 2010 Jan;52(1):15-25. doi: 10.1111/j.1440-169X.2009.01143.x. Epub 2009 Nov 5.
3
Immortality and the base of multicellular life: Lessons from cnidarian stem cells.
Semin Cell Dev Biol. 2009 Dec;20(9):1114-25. doi: 10.1016/j.semcdb.2009.09.008. Epub 2009 Sep 15.
4
The BAR domain superfamily: membrane-molding macromolecules.
Cell. 2009 Apr 17;137(2):191-6. doi: 10.1016/j.cell.2009.04.010.
5
Cnidarians and the evolutionary origin of the nervous system.
Dev Growth Differ. 2009 Apr;51(3):167-83. doi: 10.1111/j.1440-169X.2009.01103.x.
6
Cnidocyst structure and the biomechanics of discharge.
Toxicon. 2009 Dec 15;54(8):1038-45. doi: 10.1016/j.toxicon.2009.03.006. Epub 2009 Mar 13.
7
Extracellular matrix of the central nervous system: from neglect to challenge.
Histochem Cell Biol. 2008 Oct;130(4):635-53. doi: 10.1007/s00418-008-0485-9. Epub 2008 Aug 12.
8
Evolution of complex structures: minicollagens shape the cnidarian nematocyst.
Trends Genet. 2008 Sep;24(9):431-8. doi: 10.1016/j.tig.2008.07.001. Epub 2008 Aug 3.
9
Identification of a novel chondroitin hydrolase in Caenorhabditis elegans.
J Biol Chem. 2008 May 30;283(22):14971-9. doi: 10.1074/jbc.M709236200. Epub 2008 Apr 4.
10
Minicollagen-15, a novel minicollagen isolated from Hydra, forms tubule structures in nematocysts.
J Mol Biol. 2008 Feb 29;376(4):1008-20. doi: 10.1016/j.jmb.2007.10.090. Epub 2007 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验