Suppr超能文献

猴运动前神经元在运动准备和执行中的作用。

Roles of monkey premotor neuron classes in movement preparation and execution.

机构信息

Neurosciences Program, Stanford University, Stanford, California 94305-4075, USA.

出版信息

J Neurophysiol. 2010 Aug;104(2):799-810. doi: 10.1152/jn.00231.2009. Epub 2010 Jun 10.

Abstract

Dorsal premotor cortex (PMd) is known to be involved in the planning and execution of reaching movements. However, it is not understood how PMd plan activity-often present in the very same neurons that respond during movement-is prevented from itself producing movement. We investigated whether inhibitory interneurons might "gate" output from PMd, by maintaining high levels of inhibition during planning and reducing inhibition during execution. Recently developed methods permit distinguishing interneurons from pyramidal neurons using extracellular recordings. We extend these methods here for use with chronically implanted multi-electrode arrays. We then applied these methods to single- and multi-electrode recordings in PMd of two monkeys performing delayed-reach tasks. Responses of putative interneurons were not generally in agreement with the hypothesis that they act to gate output from the area: in particular it was not the case that interneurons tended to reduce their firing rates around the time of movement. In fact, interneurons increased their rates more than putative pyramidal neurons during both the planning and movement epochs. The two classes of neurons also differed in a number of other ways, including greater modulation across conditions for interneurons, and interneurons more frequently exhibiting increases in firing rate during movement planning and execution. These findings provide novel information about the greater responsiveness of putative PMd interneurons in motor planning and execution and suggest that we may need to consider new possibilities for how planning activity is structured such that it does not itself produce movement.

摘要

背侧运动前皮层(PMd)已知参与了运动的规划和执行。然而,目前尚不清楚 PMd 如何规划活动——通常存在于对运动做出响应的相同神经元中——防止活动本身产生运动。我们研究了抑制性中间神经元是否可以通过在规划期间保持高水平的抑制和在执行期间降低抑制来“控制”PMd 的输出。最近开发的方法允许使用细胞外记录来区分中间神经元和锥体神经元。我们在此将这些方法扩展到使用慢性植入的多电极阵列。然后,我们将这些方法应用于两只猴子在执行延迟到达任务时在 PMd 中的单电极和多电极记录。假定中间神经元的反应通常与它们充当区域输出门的假设不一致:特别是,中间神经元并没有倾向于在运动时降低其放电率。事实上,在规划和运动时期,中间神经元的放电率比假定的锥体神经元增加得更多。这两类神经元在许多其他方面也有所不同,包括中间神经元的条件调制更大,以及中间神经元在运动规划和执行期间更频繁地增加放电率。这些发现提供了关于在运动规划和执行中假定 PMd 中间神经元响应性更高的新信息,并表明我们可能需要考虑规划活动的结构的新可能性,以便它本身不会产生运动。

相似文献

1
Roles of monkey premotor neuron classes in movement preparation and execution.
J Neurophysiol. 2010 Aug;104(2):799-810. doi: 10.1152/jn.00231.2009. Epub 2010 Jun 10.
3
Neuronal correlates of movement dynamics in the dorsal and ventral premotor area in the monkey.
Exp Brain Res. 2006 Jan;168(1-2):106-19. doi: 10.1007/s00221-005-0074-2. Epub 2005 Sep 22.
4
The roles of monkey M1 neuron classes in movement preparation and execution.
J Neurophysiol. 2013 Aug;110(4):817-25. doi: 10.1152/jn.00892.2011. Epub 2013 May 22.
5
Preferential representation of instructed target location versus limb trajectory in dorsal premotor area.
J Neurophysiol. 1997 Mar;77(3):1195-212. doi: 10.1152/jn.1997.77.3.1195.
6
Single Neuron Firing Rate Statistics in Motor Cortex During Execution and Observation of Movement.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:981-986. doi: 10.1109/EMBC.2018.8512445.
8
Fast-Spiking Interneurons of the Premotor Cortex Contribute to Initiation and Execution of Spontaneous Actions.
J Neurosci. 2023 Jun 7;43(23):4234-4250. doi: 10.1523/JNEUROSCI.0750-22.2023. Epub 2023 May 17.
9
Contrasting Modulatory Effects from the Dorsal and Ventral Premotor Cortex on Primary Motor Cortex Outputs.
J Neurosci. 2017 Jun 14;37(24):5960-5973. doi: 10.1523/JNEUROSCI.0462-17.2017. Epub 2017 May 23.
10
Laminar differences in decision-related neural activity in dorsal premotor cortex.
Nat Commun. 2017 Sep 20;8(1):614. doi: 10.1038/s41467-017-00715-0.

引用本文的文献

1
Functional role of cell classes in monkey prefrontal cortex after learning a working memory task.
Commun Biol. 2025 May 6;8(1):703. doi: 10.1038/s42003-025-08142-4.
2
Ensemble reactivations during brief rest drive fast learning of sequences.
Nature. 2025 Feb;638(8052):1034-1042. doi: 10.1038/s41586-024-08414-9. Epub 2025 Jan 15.
3
Neural Encoding of Direction and Distance across Reference Frames in Visually Guided Reaching.
eNeuro. 2024 Dec 5;11(12). doi: 10.1523/ENEURO.0405-24.2024. Print 2024 Dec.
4
Goal-directed action preparation in humans entails a mixture of corticospinal neural computations.
bioRxiv. 2025 Feb 7:2024.07.08.602530. doi: 10.1101/2024.07.08.602530.
5
Neural Correlates of Online Action Preparation.
J Neurosci. 2024 May 29;44(22):e1880232024. doi: 10.1523/JNEUROSCI.1880-23.2024.
6
Preparatory activity and the expansive null-space.
Nat Rev Neurosci. 2024 Apr;25(4):213-236. doi: 10.1038/s41583-024-00796-z. Epub 2024 Mar 5.
7
Identifying Interpretable Latent Factors with Sparse Component Analysis.
bioRxiv. 2024 Feb 6:2024.02.05.578988. doi: 10.1101/2024.02.05.578988.
9
Dissociating the Contributions of Frontal Eye Field Activity to Spatial Working Memory and Motor Preparation.
J Neurosci. 2023 Dec 13;43(50):8681-8689. doi: 10.1523/JNEUROSCI.1071-23.2023.
10
A motor association area in the depths of the central sulcus.
Nat Neurosci. 2023 Jul;26(7):1165-1169. doi: 10.1038/s41593-023-01346-z. Epub 2023 May 18.

本文引用的文献

1
Roles of narrow- and broad-spiking dorsal premotor area neurons in reach target selection and movement production.
J Neurophysiol. 2010 Apr;103(4):2124-38. doi: 10.1152/jn.00238.2009. Epub 2010 Feb 17.
2
Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements.
Nat Neurosci. 2009 Dec;12(12):1586-93. doi: 10.1038/nn.2431. Epub 2009 Nov 8.
4
Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity.
J Neurophysiol. 2009 Jul;102(1):614-35. doi: 10.1152/jn.90941.2008. Epub 2009 Apr 8.
5
Biophysical support for functionally distinct cell types in the frontal eye field.
J Neurophysiol. 2009 Feb;101(2):912-6. doi: 10.1152/jn.90272.2008. Epub 2008 Dec 3.
6
Dynamic sculpting of directional tuning in the primate motor cortex during three-dimensional reaching.
J Neurosci. 2008 Sep 10;28(37):9164-72. doi: 10.1523/JNEUROSCI.1898-08.2008.
7
Complementary contributions of prefrontal neuron classes in abstract numerical categorization.
J Neurosci. 2008 Jul 30;28(31):7737-47. doi: 10.1523/JNEUROSCI.1347-08.2008.
8
Techniques for extracting single-trial activity patterns from large-scale neural recordings.
Curr Opin Neurobiol. 2007 Oct;17(5):609-18. doi: 10.1016/j.conb.2007.11.001.
9
Differential attention-dependent response modulation across cell classes in macaque visual area V4.
Neuron. 2007 Jul 5;55(1):131-41. doi: 10.1016/j.neuron.2007.06.018.
10
Encoding of movement fragments in the motor cortex.
J Neurosci. 2007 May 9;27(19):5105-14. doi: 10.1523/JNEUROSCI.3570-06.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验