Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-1769, USA.
Neurobiol Aging. 2010 Aug;31(8):1429-42. doi: 10.1016/j.neurobiolaging.2010.04.022. Epub 2010 Jun 11.
Machine learning methods pool diverse information to perform computer-assisted diagnosis and predict future clinical decline. We introduce a machine learning method to boost power in clinical trials. We created a Support Vector Machine algorithm that combines brain imaging and other biomarkers to classify 737 Alzheimer's disease Neuroimaging initiative (ADNI) subjects as having Alzheimer's disease (AD), mild cognitive impairment (MCI), or normal controls. We trained our classifiers based on example data including: MRI measures of hippocampal, ventricular, and temporal lobe volumes, a PET-FDG numerical summary, CSF biomarkers (t-tau, p-tau, and Abeta(42)), ApoE genotype, age, sex, and body mass index. MRI measures contributed most to Alzheimer's disease (AD) classification; PET-FDG and CSF biomarkers, particularly Abeta(42), contributed more to MCI classification. Using all biomarkers jointly, we used our classifier to select the one-third of the subjects most likely to decline. In this subsample, fewer than 40 AD and MCI subjects would be needed to detect a 25% slowing in temporal lobe atrophy rates with 80% power--a substantial boosting of power relative to standard imaging measures.
机器学习方法汇集多种信息,以进行计算机辅助诊断并预测未来的临床衰退。我们介绍了一种可提高临床试验效能的机器学习方法。我们创建了一个支持向量机算法,该算法结合了脑成像和其他生物标志物,将 737 名阿尔茨海默病神经影像学倡议 (ADNI) 研究对象分为患有阿尔茨海默病 (AD)、轻度认知障碍 (MCI) 或正常对照。我们根据示例数据训练了分类器,这些数据包括:MRI 测量的海马体、脑室和颞叶体积、PET-FDG 数值总结、CSF 生物标志物 (t-tau、p-tau 和 Abeta(42))、ApoE 基因型、年龄、性别和体重指数。MRI 测量对 AD 分类的贡献最大;PET-FDG 和 CSF 生物标志物,尤其是 Abeta(42),对 MCI 分类的贡献更大。我们使用所有生物标志物联合使用我们的分类器,选择最有可能下降的三分之一研究对象。在这个子样本中,只需要不到 40 名 AD 和 MCI 受试者就可以检测到颞叶萎缩率下降 25%,而效能达到 80%——相对于标准成像测量,效能得到了显著提高。