Suppr超能文献

利用基于多个生物标志物的分类器提高临床试验的效能。

Boosting power for clinical trials using classifiers based on multiple biomarkers.

机构信息

Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-1769, USA.

出版信息

Neurobiol Aging. 2010 Aug;31(8):1429-42. doi: 10.1016/j.neurobiolaging.2010.04.022. Epub 2010 Jun 11.

Abstract

Machine learning methods pool diverse information to perform computer-assisted diagnosis and predict future clinical decline. We introduce a machine learning method to boost power in clinical trials. We created a Support Vector Machine algorithm that combines brain imaging and other biomarkers to classify 737 Alzheimer's disease Neuroimaging initiative (ADNI) subjects as having Alzheimer's disease (AD), mild cognitive impairment (MCI), or normal controls. We trained our classifiers based on example data including: MRI measures of hippocampal, ventricular, and temporal lobe volumes, a PET-FDG numerical summary, CSF biomarkers (t-tau, p-tau, and Abeta(42)), ApoE genotype, age, sex, and body mass index. MRI measures contributed most to Alzheimer's disease (AD) classification; PET-FDG and CSF biomarkers, particularly Abeta(42), contributed more to MCI classification. Using all biomarkers jointly, we used our classifier to select the one-third of the subjects most likely to decline. In this subsample, fewer than 40 AD and MCI subjects would be needed to detect a 25% slowing in temporal lobe atrophy rates with 80% power--a substantial boosting of power relative to standard imaging measures.

摘要

机器学习方法汇集多种信息,以进行计算机辅助诊断并预测未来的临床衰退。我们介绍了一种可提高临床试验效能的机器学习方法。我们创建了一个支持向量机算法,该算法结合了脑成像和其他生物标志物,将 737 名阿尔茨海默病神经影像学倡议 (ADNI) 研究对象分为患有阿尔茨海默病 (AD)、轻度认知障碍 (MCI) 或正常对照。我们根据示例数据训练了分类器,这些数据包括:MRI 测量的海马体、脑室和颞叶体积、PET-FDG 数值总结、CSF 生物标志物 (t-tau、p-tau 和 Abeta(42))、ApoE 基因型、年龄、性别和体重指数。MRI 测量对 AD 分类的贡献最大;PET-FDG 和 CSF 生物标志物,尤其是 Abeta(42),对 MCI 分类的贡献更大。我们使用所有生物标志物联合使用我们的分类器,选择最有可能下降的三分之一研究对象。在这个子样本中,只需要不到 40 名 AD 和 MCI 受试者就可以检测到颞叶萎缩率下降 25%,而效能达到 80%——相对于标准成像测量,效能得到了显著提高。

相似文献

1
Boosting power for clinical trials using classifiers based on multiple biomarkers.
Neurobiol Aging. 2010 Aug;31(8):1429-42. doi: 10.1016/j.neurobiolaging.2010.04.022. Epub 2010 Jun 11.
2
ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease.
Neuroimage Clin. 2014 Jan 4;4:461-72. doi: 10.1016/j.nicl.2013.12.012. eCollection 2014.
3
Multimodal classification of Alzheimer's disease and mild cognitive impairment.
Neuroimage. 2011 Apr 1;55(3):856-67. doi: 10.1016/j.neuroimage.2011.01.008. Epub 2011 Jan 12.
4
Multiple Effect of APOE Genotype on Clinical and Neuroimaging Biomarkers Across Alzheimer's Disease Spectrum.
Mol Neurobiol. 2016 Sep;53(7):4539-47. doi: 10.1007/s12035-015-9388-7. Epub 2015 Aug 23.
5
Comparing predictors of conversion and decline in mild cognitive impairment.
Neurology. 2010 Jul 20;75(3):230-8. doi: 10.1212/WNL.0b013e3181e8e8b8. Epub 2010 Jun 30.
6
Enrichment through biomarkers in clinical trials of Alzheimer's drugs in patients with mild cognitive impairment.
Neurobiol Aging. 2010 Aug;31(8):1443-51, 1451.e1. doi: 10.1016/j.neurobiolaging.2010.04.036. Epub 2010 Jun 11.
7
Relations between brain tissue loss, CSF biomarkers, and the ApoE genetic profile: a longitudinal MRI study.
Neurobiol Aging. 2010 Aug;31(8):1340-54. doi: 10.1016/j.neurobiolaging.2010.04.030. Epub 2010 Jun 8.

引用本文的文献

1
Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis.
Front Neurosci. 2025 Feb 14;19:1511350. doi: 10.3389/fnins.2025.1511350. eCollection 2025.
2
Unraveling the Mysteries of Alzheimer's Disease Using Artificial Intelligence.
Rev Recent Clin Trials. 2025;20(2):124-141. doi: 10.2174/0115748871330861241030143321.
4
Alzheimer's disease detection using data fusion with a deep supervised encoder.
Front Dement. 2024;3. doi: 10.3389/frdem.2024.1332928. Epub 2024 Feb 12.
5
A Review on the Use of Modern Computational Methods in Alzheimer's Disease-Detection and Prediction.
Curr Alzheimer Res. 2024;20(12):845-861. doi: 10.2174/0115672050301514240307071217.
7
Mild Cognitive Impairment: Data-Driven Prediction, Risk Factors, and Workup.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:167-175. eCollection 2023.
8
Social complexity, life-history and lineage influence the molecular basis of castes in vespid wasps.
Nat Commun. 2023 Feb 24;14(1):1046. doi: 10.1038/s41467-023-36456-6.
9
A review of brain imaging biomarker genomics in Alzheimer's disease: implementation and perspectives.
Transl Neurodegener. 2022 Sep 15;11(1):42. doi: 10.1186/s40035-022-00315-z.
10
Multimodal neuroimage data fusion based on multikernel learning in personalized medicine.
Front Pharmacol. 2022 Aug 17;13:947657. doi: 10.3389/fphar.2022.947657. eCollection 2022.

本文引用的文献

1
Sex and age differences in atrophic rates: an ADNI study with n=1368 MRI scans.
Neurobiol Aging. 2010 Aug;31(8):1463-80. doi: 10.1016/j.neurobiolaging.2010.04.033.
2
Obesity is linked with lower brain volume in 700 AD and MCI patients.
Neurobiol Aging. 2010 Aug;31(8):1326-39. doi: 10.1016/j.neurobiolaging.2010.04.006. Epub 2010 Jun 8.
3
A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8404-9. doi: 10.1073/pnas.0910878107. Epub 2010 Apr 19.
5
6
Voxelwise genome-wide association study (vGWAS).
Neuroimage. 2010 Nov 15;53(3):1160-74. doi: 10.1016/j.neuroimage.2010.02.032. Epub 2010 Feb 17.
7
The clinical use of structural MRI in Alzheimer disease.
Nat Rev Neurol. 2010 Feb;6(2):67-77. doi: 10.1038/nrneurol.2009.215.
8
Mapping Alzheimer's disease progression in 1309 MRI scans: power estimates for different inter-scan intervals.
Neuroimage. 2010 May 15;51(1):63-75. doi: 10.1016/j.neuroimage.2010.01.104. Epub 2010 Feb 6.
9
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.
Lancet Neurol. 2010 Jan;9(1):119-28. doi: 10.1016/S1474-4422(09)70299-6.
10
Alzheimer's disease: progress in prediction.
Lancet Neurol. 2010 Jan;9(1):4-5. doi: 10.1016/S1474-4422(09)70330-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验