Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea.
Biomaterials. 2010 Sep;31(25):6628-34. doi: 10.1016/j.biomaterials.2010.05.004. Epub 2010 Jun 11.
We report a mussel-inspired route to create carbonated bone hydroxyapatite from CaCO(3) vaterite microspheres. When catechol-containing dopamine, a biomimetic small molecule of mussel adhesive proteins, was incorporated during the mineralization of CaCO(3), the oxidative polymerization of dopamine stabilized the formation of spherical vaterite, the most unstable phase among CaCO(3) crystalline structures. Thus-formed vaterite microspheres were readily transformed to carbonated hydroxyapatite crystals when incubated in a simulated body fluid at human body temperature. We found that dopamine not only stabilized the vaterite phase but also influenced the level of conversion to carbonated hydroxyapatites. Considering that carbonated hydroxyapatites are highly bioresorbable, similar to natural bone and dentin, the synthesis of a mussel-inspired hybrid material showing good in vitro bone bioactivity should present a new prospect for future applications in the treatment of bone defects and bone degenerative diseases.
我们报告了一种受贻贝启发的方法,可将 CaCO3文石微球转化为碳酸化骨羟基磷灰石。当含有儿茶酚的多巴胺(贻贝粘合蛋白的仿生小分子)在 CaCO3矿化过程中被掺入时,多巴胺的氧化聚合稳定了球形文石的形成,这是 CaCO3晶体结构中最不稳定的相。当在人体温度的模拟体液中孵育时,形成的文石微球很容易转化为碳酸化羟基磷灰石晶体。我们发现,多巴胺不仅稳定了文石相,而且还影响了转化为碳酸化羟基磷灰石的程度。考虑到碳酸化羟基磷灰石具有高度的生物可吸收性,类似于天然骨和牙本质,因此具有良好体外骨生物活性的受贻贝启发的杂化材料的合成应该为未来在治疗骨缺损和骨退行性疾病方面的应用提供新的前景。
Biomaterials. 2010-6-11
Langmuir. 2010-9-21
J Colloid Interface Sci. 2011-3-2
Mater Sci Eng C Mater Biol Appl. 2018-10-2
Biol Trace Elem Res. 2025-7-30
Sensors (Basel). 2024-4-23
Biomimetics (Basel). 2024-3-13
Bioeng Transl Med. 2022-8-11
Front Bioeng Biotechnol. 2022-7-22