Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA.
Biochemistry. 2010 Jul 27;49(29):6143-54. doi: 10.1021/bi1002635.
The AsiA protein is a T4 bacteriophage early gene product that regulates transcription of host and viral genes. Monomeric AsiA binds tightly to the sigma(70) subunit of Escherichia coli RNA polymerase, thereby inhibiting transcription from bacterial promoters and phage early promoters and coactivating transcription from phage middle promoters. Results of structural studies have identified amino acids at the protomer-protomer interface in dimeric AsiA and at the monomeric AsiA-sigma(70) interface and demonstrated substantial overlap in the sets of residues that comprise each. Here we evaluate the contributions of individual interfacial amino acid side chains to protomer-protomer affinity in AsiA homodimers, to monomeric AsiA affinity for sigma(70), and to AsiA function in transcription. Sedimentation equilibrium, dynamic light scattering, electrophoretic mobility shift, and transcription activity measurements were used to assess affinity and function of site-specific AsiA mutants. Alanine substitutions for solvent-inaccessible residues positioned centrally in the protomer-protomer interface of the AsiA homodimer, V14, I17, and I40, resulted in the largest changes in free energy of dimer association, whereas alanine substitutions at other interfacial positions had little effect. These residues also contribute significantly to AsiA-dependent regulation of RNA polymerase activity, as do additional residues positioned at the periphery of the interface (K20 and F21). Notably, the relative contributions of a given amino acid side chain to RNA polymerase inhibition and activation (MotA-independent) by AsiA are very similar in most cases. The mainstay for intermolecular affinity and AsiA function appears to be I17. Our results define the core interfacial residues of AsiA, establish roles for many of the interfacial amino acids, are in agreement with the tenets underlying protein-protein interactions and interfaces, and will be beneficial for a general, comprehensive understanding of the mechanistic underpinnings of bacterial RNA polymerase regulation.
AsiA 蛋白是 T4 噬菌体早期基因产物,调节宿主和病毒基因的转录。单体 AsiA 与大肠杆菌 RNA 聚合酶的σ(70)亚基紧密结合,从而抑制细菌启动子和噬菌体早期启动子的转录,并促进噬菌体中期启动子的转录。结构研究的结果确定了二聚体 AsiA 中的亚基间界面和单体 AsiA-σ(70)界面上的氨基酸,并且证明了构成每个界面的残基集之间存在很大的重叠。在这里,我们评估了单个界面氨基酸侧链对 AsiA 同源二聚体中亚基间亲和力、单体 AsiA 与σ(70)的亲和力以及 AsiA 在转录中的功能的贡献。沉降平衡、动态光散射、电泳迁移率变动和转录活性测量用于评估特定位置 AsiA 突变体的亲和力和功能。溶剂不可接近的残基在 AsiA 同源二聚体的亚基间界面的中央位置的丙氨酸取代,V14、I17 和 I40,导致二聚体缔合自由能的最大变化,而其他界面位置的丙氨酸取代几乎没有影响。这些残基也对 AsiA 依赖性 RNA 聚合酶活性调节有重要贡献,界面外围的其他残基(K20 和 F21)也是如此。值得注意的是,在大多数情况下,给定氨基酸侧链对 AsiA 抑制和激活(不依赖于 MotA)RNA 聚合酶的相对贡献非常相似。分子间亲和力和 AsiA 功能的主要支柱似乎是 I17。我们的结果定义了 AsiA 的核心界面残基,确定了许多界面氨基酸的作用,与蛋白质-蛋白质相互作用和界面的基本原则一致,并将有助于全面理解细菌 RNA 聚合酶调节的机制基础。