Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
J Biol Chem. 2010 Aug 13;285(33):25531-7. doi: 10.1074/jbc.M110.123984. Epub 2010 Jun 11.
Nitric -oxide reductase (NOR) from Paracoccus denitrificans catalyzes the reduction of nitric oxide (NO) to nitrous oxide (N(2)O) (2NO + 2H(+) + 2e(-) -->N(2)O + H(2)O) by a poorly understood mechanism. NOR contains two low spin hemes c and b, one high spin heme b(3), and a non-heme iron Fe(B). Here, we have studied the reaction between fully reduced NOR and NO using the "flow-flash" technique. Fully (four-electron) reduced NOR is capable of two turnovers with NO. Initial binding of NO to reduced heme b(3) occurs with a time constant of approximately 1 micros at 1.5 mM NO, in agreement with earlier studies. This reaction is [NO]-dependent, ruling out an obligatory binding of NO to Fe(B) before ligation to heme b(3). Oxidation of hemes b and c occurs in a biphasic reaction with rate constants of 50 s(-1) and 3 s(-1) at 1.5 mM NO and pH 7.5. Interestingly, this oxidation is accelerated as [NO] is lowered; the rate constants are 120 s(-1) and 12 s(-1) at 75 microM NO. Protons are taken up from solution concomitantly with oxidation of the low spin hemes, leading to an acceleration at low pH. This effect is, however, counteracted by a larger degree of substrate inhibition at low pH. Our data thus show that substrate inhibition in NOR, previously observed during multiple turnovers, already occurs during a single oxidative cycle. Thus, NO must bind to its inhibitory site before electrons redistribute to the active site. The further implications of our data for the mechanism of NO reduction by NOR are discussed.
硝酸还原酶(NOR)从脱氮副球菌催化一氧化氮(NO)还原为一氧化二氮(N(2)O)(2NO + 2H(+)+ 2e(-)-->N(2)O + H(2)O)通过一个了解甚少的机制。NOR 包含两个低自旋血红素 c 和 b,一个高自旋血红素 b(3),和一个非血红素铁 Fe(B)。在这里,我们使用“流动闪光”技术研究了完全还原的 NOR 与 NO 之间的反应。完全(四电子)还原的 NOR 能够与 NO 进行两次周转。在 1.5 mM 的 NO 下,NO 与还原的血红素 b(3)的初始结合发生在大约 1 微秒的时间常数内,这与早期的研究结果一致。该反应是[NO]依赖性的,排除了 NO 在与血红素 b(3)配位之前必须与 Fe(B)结合的强制性。血红素 b 和 c 的氧化以 50 s(-1)和 3 s(-1)的速率常数在 1.5 mM 的 NO 和 pH 7.5 下发生两相反应。有趣的是,当[NO]降低时,这种氧化会加速;在 75 μM 的 NO 下,速率常数分别为 120 s(-1)和 12 s(-1)。伴随着低自旋血红素的氧化,同时从溶液中摄取质子,导致在低 pH 下加速。然而,这种效应被低 pH 下更大程度的底物抑制所抵消。因此,我们的数据表明,NOR 中之前在多次周转中观察到的底物抑制,在单个氧化循环中就已经发生了。因此,电子重新分配到活性位点之前,NO 必须先结合到其抑制性位点。我们的数据对 NOR 还原 NO 的机制的进一步影响进行了讨论。