Divison of Environmental & Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University , 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, United States.
J Am Chem Soc. 2014 Feb 12;136(6):2420-31. doi: 10.1021/ja410542z. Epub 2014 Feb 3.
Denitrifying NO reductases are transmembrane protein complexes that are evolutionarily related to heme/copper terminal oxidases. They utilize a heme/nonheme diiron center to reduce two NO molecules to N2O. Engineering a nonheme Fe(B) site within the heme distal pocket of sperm whale myoglobin has offered well-defined diiron clusters for the investigation of the mechanism of NO reduction in these unique active sites. In this study, we use FTIR spectroscopy to monitor the production of N2O in solution and to show that the presence of a distal Fe(B)(II) is not sufficient to produce the expected product. However, the addition of a glutamate side chain peripheral to the diiron site allows for 50% of a productive single-turnover reaction. Unproductive reactions are characterized by resonance Raman spectroscopy as dinitrosyl complexes, where one NO molecule is bound to the heme iron to form a five-coordinate low-spin {FeNO}(7) species with ν(FeNO)(heme) and ν(NO)(heme) at 522 and 1660 cm(-1), and a second NO molecule is bound to the nonheme Fe(B) site with a ν(NO)(FeB) at 1755 cm(-1). Stopped-flow UV-vis absorption coupled with rapid-freeze-quench resonance Raman spectroscopy provide a detailed map of the reaction coordinates leading to the unproductive iron-nitrosyl dimer. Unexpectedly, NO binding to Fe(B) is kinetically favored and occurs prior to the binding of a second NO to the heme iron, leading to a (six-coordinate low-spin heme-nitrosyl/FeB-nitrosyl) transient dinitrosyl complex with characteristic ν(FeNO)(heme) at 570 ± 2 cm(-1) and ν(NO)(FeB) at 1755 cm(-1). Without the addition of a peripheral glutamate, the dinitrosyl complex is converted to a dead-end product after the dissociation of the proximal histidine of the heme iron, but the added peripheral glutamate side chain in Fe(B)Mb2 lowers the rate of dissociation of the promixal histidine which in turn allows the (six-coordinate low-spin heme-nitrosyl/Fe(B)-nitrosyl) transient dinitrosyl complex to decay with production of N2O at a rate of 0.7 s(-1) at 4 °C. Taken together, our results support the proposed trans mechanism of NO reduction in NORs.
反硝化 NO 还原酶是跨膜蛋白复合物,在进化上与血红素/铜末端氧化酶有关。它们利用一个血红素/非血红素双核铁中心将两个 NO 分子还原为 N2O。在精子鱼肌红蛋白的血红素远端口袋内工程化一个非血红素 Fe(B) 位,为这些独特活性位点中 NO 还原机制的研究提供了明确的双核铁簇。在这项研究中,我们使用傅里叶变换红外光谱(FTIR)监测溶液中 N2O 的生成,并表明存在远端 Fe(B)(II) 不足以产生预期产物。然而,在双核铁位周围添加一个谷氨酸侧链允许 50%的生产性单 turnover 反应。无生产性反应的特征是共振拉曼光谱(resonance Raman spectroscopy),其中一个 NO 分子与血红素铁结合形成一个五配位低自旋 {FeNO}(7) 物种,ν(FeNO)(heme) 和 ν(NO)(heme) 在 522 和 1660 cm(-1),第二个 NO 分子与非血红素 Fe(B) 位结合,ν(NO)(FeB) 在 1755 cm(-1)。停流紫外可见吸收与快速冷冻淬灭共振拉曼光谱相结合,提供了导致无生产性铁-亚硝酰二聚体的反应坐标的详细图谱。出乎意料的是,NO 与 Fe(B) 的结合在动力学上是有利的,并且发生在第二个 NO 与血红素铁结合之前,导致具有特征 ν(FeNO)(heme) 在 570 ± 2 cm(-1)和 ν(NO)(FeB)在 1755 cm(-1)的(六配位低自旋血红素-亚硝酰/FeB-亚硝酰)瞬态双亚硝酰复合物。如果不添加外围谷氨酸,双亚硝酰复合物在血红素铁的近端组氨酸解离后会转化为无终产物,但添加到 Fe(B)Mb2 中的外围谷氨酸侧链会降低近端组氨酸的解离速率,从而使(六配位低自旋血红素-亚硝酰/Fe(B)-亚硝酰)瞬态双亚硝酰复合物以 0.7 s(-1)的速率在 4 °C 下分解,生成 N2O。总的来说,我们的结果支持 NOR 中 NO 还原的拟议的 trans 机制。