Suppr超能文献

三维受限几何结构中的微管组织:通过体外实验与建模相结合的方法评估弹性的作用。

Microtubule organization in three-dimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach.

作者信息

Cosentino Lagomarsino Marco, Tanase Catalin, Vos Jan W, Emons Anne Mie C, Mulder Bela M, Dogterom Marileen

机构信息

FOM Institute for Atomic and Molecular Physics (AMOLF), 1098 SJ Amsterdam, The Netherlands.

出版信息

Biophys J. 2007 Feb 1;92(3):1046-57. doi: 10.1529/biophysj.105.076893. Epub 2006 Nov 10.

Abstract

Microtubules or microtubule bundles in cells often grow longer than the size of the cell, which causes their shape and organization to adapt to constraints imposed by the cell geometry. We test the reciprocal role of elasticity and confinement in the organization of growing microtubules in a confining box-like geometry, in the absence of other (active) microtubule organizing processes. This is inspired, for example, by the cortical microtubule array of elongating plant cells, where microtubules are typically organized in an aligned array transverse to the cell elongation axis. The method we adopt is a combination of analytical calculations, in which the polymers are modeled as inextensible filaments with bending elasticity confined to a two-dimensional surface that defines the limits of a three-dimensional space, and in vitro experiments, in which microtubules are polymerized from nucleation seeds in microfabricated chambers. We show that these features are sufficient to organize the polymers in aligned, coiling configurations as for example observed in plant cells. Though elasticity can account for the regularity of these arrays, it cannot account for a transverse orientation of microtubules to the cell's long axis. We therefore conclude that an additional active, force-generating process is necessary to create a coiling configuration perpendicular to the long axis of the cell.

摘要

细胞中的微管或微管束常常生长得比细胞本身的尺寸还要长,这使得它们的形状和组织方式需要适应细胞几何结构所施加的限制。在没有其他(主动的)微管组织过程的情况下,我们在类似盒子的受限几何结构中测试了弹性和限制在生长微管组织中的相互作用。例如,这一研究受到伸长的植物细胞皮层微管阵列的启发,在该阵列中,微管通常沿横向于细胞伸长轴的方向排列成阵列。我们采用的方法是将解析计算与体外实验相结合,在解析计算中,聚合物被建模为具有弯曲弹性的不可伸长细丝,其被限制在定义三维空间边界的二维表面上;在体外实验中,微管从微加工腔室中的成核种子聚合而成。我们表明,这些特征足以使聚合物排列成如在植物细胞中观察到的对齐、盘绕构型。虽然弹性可以解释这些阵列的规则性,但它无法解释微管相对于细胞长轴的横向取向。因此,我们得出结论,需要一个额外的主动的、产生力的过程来形成垂直于细胞长轴的盘绕构型。

相似文献

2
Model for the orientational ordering of the plant microtubule cortical array.植物微管皮层阵列取向排序模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011911. doi: 10.1103/PhysRevE.82.011911. Epub 2010 Jul 19.
6
Anisotropic elastic properties of microtubules.微管的各向异性弹性特性。
Eur Phys J E Soft Matter. 2005 May;17(1):29-35. doi: 10.1140/epje/i2004-10102-5. Epub 2005 Apr 6.
8
A mechanics model of microtubule buckling in living cells.活细胞中微管屈曲的力学模型。
J Biomech. 2008;41(8):1722-9. doi: 10.1016/j.jbiomech.2008.03.003. Epub 2008 Apr 22.
9
Effects of confinement on the self-organization of microtubules and motors.限制对微管和马达自组织的影响。
Curr Biol. 2009 Jun 9;19(11):954-60. doi: 10.1016/j.cub.2009.04.027. Epub 2009 May 7.

引用本文的文献

4
7
Cytoskeletal organization in isolated plant cells under geometry control.几何控制下分离植物细胞中的细胞骨架组织
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17399-17408. doi: 10.1073/pnas.2003184117. Epub 2020 Jul 8.
9
Organization of associating or crosslinked actin filaments in confinement.在限制条件下,关联或交联肌动蛋白丝的组织。
Cytoskeleton (Hoboken). 2019 Nov;76(11-12):532-548. doi: 10.1002/cm.21565. Epub 2019 Oct 31.
10
Are microtubules tension sensors?微管是张力传感器吗?
Nat Commun. 2019 May 29;10(1):2360. doi: 10.1038/s41467-019-10207-y.

本文引用的文献

2
7
Microtubules and the shape of plants to come.微管与未来植物的形态。
Nat Rev Mol Cell Biol. 2004 Jan;5(1):13-22. doi: 10.1038/nrm1277.
10
Sustained microtubule treadmilling in Arabidopsis cortical arrays.拟南芥皮层微管阵列中的持续微管踏车运动。
Science. 2003 Jun 13;300(5626):1715-8. doi: 10.1126/science.1083529. Epub 2003 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验