State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, 510275, Guangzhou, China.
Opt Lett. 2010 Jun 15;35(12):1974-6. doi: 10.1364/OL.35.001974.
We report dynamic regimes supported by a sharp quasi-one-dimensional (1D) ("razor"), pyramid-shaped ("dagger"), and conical ("needle") potentials in the 2D complex Ginzburg-Landau (CGL) equation with cubic-quintic nonlinearity. This is a model of an active optical medium with respective expanding antiwaveguiding structures. If the potentials are strong enough, they give rise to continuous generation of expanding soliton patterns by a 2D soliton initially placed at the center. In the case of the pyramidal potential with M edges, the generated patterns are sets of M jets for M < or = 5, or expanding polygonal chains of solitons for M > or = 6. In the conical geometry, these are concentric waves expanding in the radial direction.
我们报告了在具有三次-五次非线性的二维复 Ginzburg-Landau(CGL)方程中,尖锐的拟一维(1D)(“剃刀”)、金字塔形(“匕首”)和锥形(“针”)势支持的动态区域。这是一个具有相应扩展反波导结构的活性光学介质模型。如果势足够强,它们会通过最初放置在中心的二维孤子连续产生扩展孤子图案。在具有 M 个边缘的金字塔形势的情况下,生成的图案是 M <或=5 的 M 束射流,或者 M >或=6 的扩展多边形孤子链。在锥形几何中,这些是在径向方向上扩展的同心波。