He Yingji, Mihalache Dumitru, Malomed Boris A, Qiu Yunli, Chen Zhanxu, Li Yifang
School of Electronics and Information, Guangdong Polytechnic Normal University, 510665 Guangzhou, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066206. doi: 10.1103/PhysRevE.85.066206. Epub 2012 Jun 20.
We demonstrate that, in a two-dimensional dissipative medium described by the cubic-quintic (CQ) complex Ginzburg-Landau (CGL) equation with the viscous (spectral-filtering) term, necklace rings carrying a mixed radial-azimuthal phase modulation can evolve into polygonal or quasipolygonal stable soliton clusters, and into stable fundamental solitons. The outcome of the evolution is controlled by the depth and azimuthal anharmonicity of the phase-modulation profile, or by the radius and number of "beads" in the initial necklace ring. Threshold characteristics of the evolution of the patterns are identified and explained. Parameter regions for the formation of the stable polygonal and quasipolygonal soliton clusters, and of stable fundamental solitons, are identified. The model with the CQ terms replaced by the full saturable nonlinearity produces essentially the same set of basic dynamical scenarios; hence this set is a universal one for the CGL models.
我们证明,在具有粘性(频谱滤波)项的三次-五次(CQ)复金兹堡-朗道(CGL)方程所描述的二维耗散介质中,携带混合径向-方位角相位调制的项链环可演化为多边形或准多边形稳定孤子簇,以及稳定的基本孤子。演化结果由相位调制轮廓的深度和方位角非谐性控制,或者由初始项链环中“珠子”的半径和数量控制。识别并解释了图案演化的阈值特性。确定了形成稳定多边形和准多边形孤子簇以及稳定基本孤子的参数区域。用完全饱和非线性代替CQ项的模型产生了基本相同的一组基本动力学情景;因此,这组情景对于CGL模型来说是通用的。