Institut für Theoretische Chemie, Department für Chemie, Universität zu Köln, Germany.
Inorg Chem. 2010 Jul 19;49(14):6428-35. doi: 10.1021/ic902496u.
The bis(salicylhydroxamato) and bis(benzohydroxamato) complexes of UO(2)(2+) in aqueous solution have been investigated in a combined experimental and computational effort using extended X-ray absorption fine structure and UV-vis spectroscopy and density functional theory (DFT) techniques, respectively. The experimentally unknown bis(benzoate) complex of UO(2)(2+) was investigated computationally for comparison. Experimental data indicate 5-fold UO(2)(2+) coordination with mean equatorial U-O distances of 2.42 and 2.40 A for the salicyl- and benzohydroxamate systems, respectively. DFT calculations on microsolvated model systems [UO(2)L(2)OH(2)] indicate UO(2)(2+) eta(2)-chelation via the hydroxamate oxygen atoms in excellent agreement with experimental data; calculated complex stabilities support that UO(2)(2+) prefers hydroxamate over carboxylate coordination. The 414 nm absorption band of UO(2)(2+) in aqueous solution is blue-shifted to 390 and 386 nm upon complexation by salicyl- and benzohydroxamate, respectively. Calculated time-dependent DFT excitation energies of [UO(2)L(2)OH(2)], however, occasionally fail to reproduce accurately experimental UV-vis spectra, which are dominated by UO(2)(2+) <-- L(-) charge-transfer contributions. We additionally show that the U(VI) large-core pseudopotential approximation recently developed by some of the authors can routinely be applied for electronic structure calculations not involving uranium 5f occupations significantly different from U(VI).
采用扩展 X 射线吸收精细结构和紫外-可见光谱学以及密度泛函理论(DFT)技术,对 UO(2)(2+)在水溶液中的双(水杨羟肟酸)和双(苯羟肟酸)配合物进行了实验和计算研究。为了进行比较,我们还通过计算研究了实验上未知的 UO(2)(2+)双(苯甲酸盐)配合物。实验数据表明,UO(2)(2+)的 5 配位结构,水杨羟肟酸和苯羟肟酸体系的平均赤道 U-O 距离分别为 2.42 和 2.40 Å。对微溶剂化模型体系[UO(2)L(2)OH(2)]的 DFT 计算表明,UO(2)(2+)通过肟酸氧原子发生 eta(2)-螯合,与实验数据非常吻合;计算得到的配合物稳定性表明,UO(2)(2+)更倾向于与羟肟酸配位,而不是与羧酸盐配位。UO(2)(2+)在水溶液中的 414nm 吸收带在与水杨羟肟酸和苯羟肟酸配位后分别蓝移至 390nm 和 386nm。然而,计算得到的[UO(2)L(2)OH(2)]的时间相关 DFT 激发能偶尔不能准确地重现实验的紫外-可见光谱,后者主要由 UO(2)(2+)<--L(-)电荷转移贡献主导。我们还表明,作者之一最近开发的 U(VI)大核赝势近似可以常规地应用于不涉及铀 5f 占据与 U(VI)显著不同的电子结构计算。