Department of Biomedical Engineering, The University of Texas, Austin, Texas 78712, USA.
J Comput Chem. 2011 Apr 15;32(5):967-77. doi: 10.1002/jcc.21681. Epub 2010 Oct 5.
Hydration free energy (HFE) is generally used for evaluating molecular solubility, which is an important property for pharmaceutical and chemical engineering processes. Accurately predicting HFE is also recognized as one fundamental capability of molecular mechanics force field. Here, we present a systematic investigation on HFE calculations with AMOEBA polarizable force field at various parameterization and simulation conditions. The HFEs of seven small organic molecules have been obtained alchemically using the Bennett Acceptance Ratio method. We have compared two approaches to derive the atomic multipoles from quantum mechanical calculations: one directly from the new distributed multipole analysis and the other involving fitting to the electrostatic potential around the molecules. Wave functions solved at the MP2 level with four basis sets (6-311G*, 6-311++G(2d,2p), cc-pVTZ, and aug-cc-pVTZ) are used to derive the atomic multipoles. HFEs from all four basis sets show a reasonable agreement with experimental data (root mean square error 0.63 kcal/mol for aug-cc-pVTZ). We conclude that aug-cc-pVTZ gives the best performance when used with AMOEBA, and 6-311++G(2d,2p) is comparable but more efficient for larger systems. The results suggest that the inclusion of diffuse basis functions is important for capturing intermolecular interactions. The effect of long-range correction to van der Waals interaction on the hydration free energies is about 0.1 kcal/mol when the cutoff is 12Å, and increases linearly with the number of atoms in the solute/ligand. In addition, we also discussed the results from a hybrid approach that combines polarizable solute with fixed-charge water in the HFE calculation.
水合自由能(HFE)通常用于评估分子的溶解度,这是制药和化学工程过程中的一个重要性质。准确预测 HFE 也被认为是分子力学力场的一项基本能力。在这里,我们使用 AMOEBA 极化力场在各种参数化和模拟条件下对 HFE 计算进行了系统的研究。通过 Bennett 接受率方法,我们从化学上获得了七种小分子的 HFE。我们比较了两种从量子力学计算中导出原子多极子的方法:一种是直接从新的分布多极子分析中得出,另一种是涉及对分子周围静电势的拟合。使用四个基组(6-311G*、6-311++G(2d,2p)、cc-pVTZ 和 aug-cc-pVTZ)在 MP2 水平上求解波函数以导出原子多极子。所有四个基组的 HFE 与实验数据(对于 aug-cc-pVTZ 为 0.63 kcal/mol 的均方根误差)显示出合理的一致性。我们得出结论,当与 AMOEBA 一起使用时,aug-cc-pVTZ 表现最佳,而 6-311++G(2d,2p)对于更大的系统来说是可比的,但效率更高。结果表明,包含弥散基函数对于捕捉分子间相互作用很重要。当截止值为 12Å 时,对范德华相互作用的长程修正对水合自由能的影响约为 0.1 kcal/mol,并且随着溶质/配体中原子数的增加呈线性增加。此外,我们还讨论了在 HFE 计算中结合可极化溶质和固定电荷水的混合方法的结果。