Suppr超能文献

无溶剂化自由能计算中的多极静电作用。

Multipole electrostatics in hydration free energy calculations.

机构信息

Department of Biomedical Engineering, The University of Texas, Austin, Texas 78712, USA.

出版信息

J Comput Chem. 2011 Apr 15;32(5):967-77. doi: 10.1002/jcc.21681. Epub 2010 Oct 5.

Abstract

Hydration free energy (HFE) is generally used for evaluating molecular solubility, which is an important property for pharmaceutical and chemical engineering processes. Accurately predicting HFE is also recognized as one fundamental capability of molecular mechanics force field. Here, we present a systematic investigation on HFE calculations with AMOEBA polarizable force field at various parameterization and simulation conditions. The HFEs of seven small organic molecules have been obtained alchemically using the Bennett Acceptance Ratio method. We have compared two approaches to derive the atomic multipoles from quantum mechanical calculations: one directly from the new distributed multipole analysis and the other involving fitting to the electrostatic potential around the molecules. Wave functions solved at the MP2 level with four basis sets (6-311G*, 6-311++G(2d,2p), cc-pVTZ, and aug-cc-pVTZ) are used to derive the atomic multipoles. HFEs from all four basis sets show a reasonable agreement with experimental data (root mean square error 0.63 kcal/mol for aug-cc-pVTZ). We conclude that aug-cc-pVTZ gives the best performance when used with AMOEBA, and 6-311++G(2d,2p) is comparable but more efficient for larger systems. The results suggest that the inclusion of diffuse basis functions is important for capturing intermolecular interactions. The effect of long-range correction to van der Waals interaction on the hydration free energies is about 0.1 kcal/mol when the cutoff is 12Å, and increases linearly with the number of atoms in the solute/ligand. In addition, we also discussed the results from a hybrid approach that combines polarizable solute with fixed-charge water in the HFE calculation.

摘要

水合自由能(HFE)通常用于评估分子的溶解度,这是制药和化学工程过程中的一个重要性质。准确预测 HFE 也被认为是分子力学力场的一项基本能力。在这里,我们使用 AMOEBA 极化力场在各种参数化和模拟条件下对 HFE 计算进行了系统的研究。通过 Bennett 接受率方法,我们从化学上获得了七种小分子的 HFE。我们比较了两种从量子力学计算中导出原子多极子的方法:一种是直接从新的分布多极子分析中得出,另一种是涉及对分子周围静电势的拟合。使用四个基组(6-311G*、6-311++G(2d,2p)、cc-pVTZ 和 aug-cc-pVTZ)在 MP2 水平上求解波函数以导出原子多极子。所有四个基组的 HFE 与实验数据(对于 aug-cc-pVTZ 为 0.63 kcal/mol 的均方根误差)显示出合理的一致性。我们得出结论,当与 AMOEBA 一起使用时,aug-cc-pVTZ 表现最佳,而 6-311++G(2d,2p)对于更大的系统来说是可比的,但效率更高。结果表明,包含弥散基函数对于捕捉分子间相互作用很重要。当截止值为 12Å 时,对范德华相互作用的长程修正对水合自由能的影响约为 0.1 kcal/mol,并且随着溶质/配体中原子数的增加呈线性增加。此外,我们还讨论了在 HFE 计算中结合可极化溶质和固定电荷水的混合方法的结果。

相似文献

1
Multipole electrostatics in hydration free energy calculations.
J Comput Chem. 2011 Apr 15;32(5):967-77. doi: 10.1002/jcc.21681. Epub 2010 Oct 5.
2
Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
J Phys Chem A. 2008 May 8;112(18):4342-54. doi: 10.1021/jp7108847. Epub 2008 Mar 29.
4
Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
J Phys Chem B. 2007 Mar 8;111(9):2242-54. doi: 10.1021/jp0667442. Epub 2007 Feb 10.
5
Modeling organochlorine compounds and the σ-hole effect using a polarizable multipole force field.
J Phys Chem B. 2014 Jun 19;118(24):6456-65. doi: 10.1021/jp411671a. Epub 2014 Feb 20.
6
Continuum polarizable force field within the Poisson-Boltzmann framework.
J Phys Chem B. 2008 Jun 26;112(25):7675-88. doi: 10.1021/jp7110988. Epub 2008 May 29.
7
Automation of AMOEBA polarizable force field for small molecules: Poltype 2.
J Comput Chem. 2022 Sep 5;43(23):1530-1542. doi: 10.1002/jcc.26954. Epub 2022 Jul 1.
8
MP2.X: a generalized MP2.5 method that produces improved binding energies with smaller basis sets.
Phys Chem Chem Phys. 2011 Dec 21;13(47):21121-5. doi: 10.1039/c1cp22525a. Epub 2011 Oct 24.
9
Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field.
J Chem Inf Model. 2023 May 8;63(9):2769-2782. doi: 10.1021/acs.jcim.3c00155. Epub 2023 Apr 19.
10
Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory.
J Chem Theory Comput. 2015 Jun 9;11(6):2473-86. doi: 10.1021/ct5010593. Epub 2015 May 4.

引用本文的文献

3
Inclusion of High-Field Target Data in AMOEBA's Calibration Improves Predictions of Protein-Ion Interactions.
J Chem Inf Model. 2022 Oct 10;62(19):4713-4726. doi: 10.1021/acs.jcim.2c00758. Epub 2022 Sep 29.
4
Uncovering Differences in Hydration Free Energies and Structures for Model Compound Mimics of Charged Side Chains of Amino Acids.
J Phys Chem B. 2021 Apr 29;125(16):4148-4161. doi: 10.1021/acs.jpcb.1c01073. Epub 2021 Apr 20.
5
Impact of electronic polarizability on protein-functional group interactions.
Phys Chem Chem Phys. 2020 Apr 6;22(13):6848-6860. doi: 10.1039/d0cp00088d.
6
Computational insights into the binding of IN17 inhibitors to MELK.
J Mol Model. 2019 May 8;25(6):151. doi: 10.1007/s00894-019-4036-1.
9
Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
J Comput Chem. 2017 Sep 5;38(23):2047-2055. doi: 10.1002/jcc.24853. Epub 2017 Jun 10.
10
Metal Ion Modeling Using Classical Mechanics.
Chem Rev. 2017 Feb 8;117(3):1564-1686. doi: 10.1021/acs.chemrev.6b00440. Epub 2017 Jan 3.

本文引用的文献

1
Distributed Multipole Analysis:  Stability for Large Basis Sets.
J Chem Theory Comput. 2005 Nov;1(6):1128-32. doi: 10.1021/ct050190+.
3
Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.
J Chem Theory Comput. 2010 May 11;6(5):1509-19. doi: 10.1021/ct900587b. Epub 2010 Apr 14.
4
Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
J Chem Theory Comput. 2009 Apr 14;5(4):919-30. doi: 10.1021/ct800445x. Epub 2009 Mar 24.
5
Generalized Born model with a simple, robust molecular volume correction.
J Chem Theory Comput. 2007 Jan 1;3(1):156-169. doi: 10.1021/ct600085e.
6
The AGBNP2 Implicit Solvation Model.
J Chem Theory Comput. 2009 Jul 31;5(9):2544-2564. doi: 10.1021/ct900234u.
9
Trypsin-ligand binding free energy calculation with AMOEBA.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2328-31. doi: 10.1109/IEMBS.2009.5335108.
10
Restoring charge asymmetry in continuum electrostatics calculations of hydration free energies.
J Phys Chem B. 2009 Jun 18;113(24):8206-9. doi: 10.1021/jp9020799.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验