Suppr超能文献

使用线段链表的快速且节省内存的 2-D 连通分量。

Fast and memory efficient 2-D connected components using linked lists of line segments.

机构信息

Department of Telecommunications and Information Processing, Ghent University, Belgium.

出版信息

IEEE Trans Image Process. 2010 Dec;19(12):3222-31. doi: 10.1109/TIP.2010.2052826. Epub 2010 Jun 14.

Abstract

In this paper we present a more efficient approach to the problem of finding the connected components in binary images. In conventional connected components algorithms, the main data structure to compute and store the connected components is the region label image. We replace the region label image with a singly-linked list of line segments (or runs) for each region. This enables us to design a very fast and memory efficient connected components algorithm. Most conventional algorithms require (at least) two raster scans. Those that only need one raster scan, require irregular and unbounded image access. The proposed algorithm is a single pass regular access algorithm and only requires access to the three most recently processed image lines at any given time. Experimental results demonstrate that our algorithm is considerably faster than the fastest conventional algorithm. Additionally, our novel region coding data structure uses much less memory in typical cases than the traditional region label image. Even in worst case situations the processing time of our algorithm is linear with the number of pixels in an image.

摘要

在本文中,我们提出了一种更有效的方法来解决二值图像中连通分量的问题。在传统的连通分量算法中,用于计算和存储连通分量的主要数据结构是区域标记图像。我们用每个区域的线段(或运行)的单链表替换区域标记图像。这使我们能够设计一种非常快速和节省内存的连通分量算法。大多数传统算法需要(至少)两个光栅扫描。那些只需要一个光栅扫描的算法需要不规则和无界的图像访问。所提出的算法是一种单遍规则访问算法,在任何给定时间只需要访问最近处理的三条图像线。实验结果表明,我们的算法比最快的传统算法快得多。此外,我们新颖的区域编码数据结构在典型情况下比传统的区域标记图像使用的内存少得多。即使在最坏情况下,我们的算法的处理时间也是图像像素数的线性函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验