Suppr超能文献

自由视角步态识别。

Free-view gait recognition.

机构信息

National Engineering Laboratory for Video Technology, School of Electronics Engineering and Computer Sciences, Peking University, Haidian, China.

Pengcheng Laboratory, Shenzheng, China.

出版信息

PLoS One. 2019 Apr 16;14(4):e0214389. doi: 10.1371/journal.pone.0214389. eCollection 2019.

Abstract

Human gait has been shown to be an effective biometric measure for person identification at a distance. On the other hand, changes in the view angle pose a major challenge for gait recognition as human gait silhouettes are usually different from different view angles. Traditionally, such a multi-view gait recognition problem can be tackled by View Transformation Model (VTM) which transforms gait features from multiple gallery views to the probe view so as to evaluate the gait similarity. In the real-world environment, however, gait sequences may be captured from an uncontrolled scene and the view angle is often unknown, dynamically changing, or does not belong to any predefined views (thus VTM becomes inapplicable). To address this free-view gait recognition problem, we propose an innovative view-adaptive mapping (VAM) approach. The VAM employs a novel walking trajectory fitting (WTF) to estimate the view angles of a gait sequence, and a joint gait manifold (JGM) to find the optimal manifold between the probe data and relevant gallery data for gait similarity evaluation. Additionally, a RankSVM-based algorithm is developed to supplement the gallery data for subjects whose gallery features are only available in predefined views. Extensive experiments on both indoor and outdoor datasets demonstrate that the VAM outperforms several reference methods remarkably in free-view gait recognition.

摘要

人类步态已被证明是一种有效的远距离生物识别度量标准。另一方面,视角的变化对步态识别构成了重大挑战,因为人类步态轮廓通常因视角不同而不同。传统上,这种多视角步态识别问题可以通过视图变换模型 (VTM) 来解决,VTM 可以将步态特征从多个图库视图转换到探针视图,以评估步态的相似性。然而,在现实环境中,步态序列可能是从不受控制的场景中捕获的,视角通常是未知的、动态变化的,或者不属于任何预定义的视图(因此 VTM 变得不适用)。为了解决这个自由视角步态识别问题,我们提出了一种创新的视图自适应映射 (VAM) 方法。VAM 采用新颖的行走轨迹拟合 (WTF) 来估计步态序列的视角,并采用联合步态流形 (JGM) 在探针数据和相关图库数据之间找到最优流形,以进行步态相似性评估。此外,还开发了基于 RankSVM 的算法来补充图库数据,以补充图库特征仅在预定义视图中可用的主体的图库数据。在室内和室外数据集上进行的广泛实验表明,VAM 在自由视角步态识别方面明显优于几种参考方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cadf/6467377/3bd8e8789f2a/pone.0214389.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验