Department of Psychology, Ohio State University, Columbus, Ohio, USA.
Psychon Bull Rev. 2010 Jun;17(3):275-86. doi: 10.3758/PBR.17.3.275.
Multinomial processing tree (MPT) modeling has been widely and successfully applied as a statistical methodology for measuring hypothesized latent cognitive processes in selected experimental paradigms. In this article, we address the problem of selecting the best MPT model from a set of scientifically plausible MPT models, given observed data. We introduce a minimum description length (MDL) based model-selection approach that overcomes the limitations of existing methods such as the G(2)-based likelihood ratio test, the Akaike information criterion, and the Bayesian information criterion. To help ease the computational burden of implementing MDL, we provide a computer program in MATLAB that performs MDL-based model selection for any MPT model, with or without inequality constraints. Finally, we discuss applications of the MDL approach to well-studied MPT models with real data sets collected in two different experimental paradigms: source monitoring and pair clustering. The aforementioned MATLAB program may be downloaded from http://pbr.psychonomic-journals.org/content/supplemental.
多项处理树 (MPT) 建模已被广泛且成功地应用于作为一种统计方法,用于在选定的实验范式中测量假设的潜在认知过程。在本文中,我们解决了从一组科学合理的 MPT 模型中选择最佳 MPT 模型的问题,给定观测数据。我们引入了一种基于最小描述长度 (MDL) 的模型选择方法,该方法克服了现有方法的局限性,例如基于 G(2)的似然比检验、Akaike 信息准则和贝叶斯信息准则。为了帮助减轻实施 MDL 的计算负担,我们提供了一个在 MATLAB 中执行 MDL 模型选择的计算机程序,适用于任何具有或不具有不等式约束的 MPT 模型。最后,我们讨论了 MDL 方法在两个不同实验范式中收集的真实数据集的经过充分研究的 MPT 模型中的应用:来源监测和配对聚类。上述 MATLAB 程序可从 http://pbr.psychonomic-journals.org/content/supplemental 下载。