Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond SA 5064, Australia.
BMC Genomics. 2010 Jun 17;11:382. doi: 10.1186/1471-2164-11-382.
Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum), Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat.
We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs.
The physical map reported here is the first physical map using fingerprinting of a complete Triticeae genome. This study demonstrates that global fingerprinting of the large plant genomes is a viable strategy for generating physical maps. Physical maps allow the description of the co-linearity between wheat and grass genomes and provide a powerful tool for positional cloning of new genes.
对于比较基因组学和大型重复基因组(如六倍体小麦)的测序来说,使用细菌人工染色体(BAC)克隆文库构建的物理图谱是必不可少的。六倍体小麦(Triticum aestivum)D 基因组的二倍体祖先种节节麦(Aegilops tauschii)被用作小麦基因组学的资源。大麦二倍体基因组也为禾本科和小麦提供了一个很好的模型,因为它仅略大于小麦 D 基因组的祖先。通过从水稻和短柄草推断到节节麦或大麦,然后再推断到小麦,可以利用禾本科之间的基因共线性。
我们报告了利用节节麦构建 3DS 染色体臂上一个大的远缘区的物理图谱。通过将 85 个 Ae. tauschii 和大麦遗传图谱上的 EST 锚定在 Ae. tauschii 的 BAC 克隆上,构建了一个 25.4Mb 的物理图谱。24 个 contigs 被定位到水稻和短柄草基因组序列以及大麦高密度 SNP 遗传图谱上。正如预期的那样,该映射区域与水稻的同源染色体 1、短柄草的染色体 2 和大麦的染色体 3H 高度共线性。然而,呈现的比较图谱的染色体尺度为禾本科基因组组织提供了新的见解。节节麦与水稻和节节麦与短柄草的基因序列的排列是相同的。我们观察到了节节麦与大麦之间的染色体重排。对 Ae. tauschii 物理图谱和遗传图谱的比较表明,该区域的重组率从远端的 2.19 cM/Mb 下降到近端的 0.09 cM/Mb。通过比较图谱上的重组率与单个 contigs 上计算的局部重组率来评估 contigs 之间的间隙大小。
本报告的物理图谱是使用全基因组指纹图谱构建的第一个三属物理图谱。本研究表明,对大型植物基因组进行全基因组指纹图谱分析是生成物理图谱的可行策略。物理图谱允许描述小麦和禾本科基因组之间的共线性,并为新基因的定位克隆提供了有力工具。