Suppr超能文献

短的信号距离使植物的通讯成为独白。

Short signalling distances make plant communication a soliloquy.

机构信息

Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato, México.

出版信息

Biol Lett. 2010 Dec 23;6(6):843-5. doi: 10.1098/rsbl.2010.0440. Epub 2010 Jun 16.

Abstract

Plants respond to attack by herbivores or pathogens with the release of volatile organic compounds. Neighbouring plants can receive these volatiles and consecutively induce their own defence arsenal. This 'plant communication', however, appears counterintuitive when it benefits independent and genetically unrelated receivers, which may compete with the emitter. As a solution to this problem, a role for volatile compounds in within-plant signalling has been predicted. We used wild-type lima bean (Phaseolus lunatus) to quantify under field conditions the distances over which volatile signals move, and thereby determine whether these cues will mainly trigger resistance in other parts of the same plant or in independent plants. Independent receiver plants exhibited airborne resistance to herbivores or pathogens at maximum distances of 50 cm from a resistance-expressing emitter. In undisturbed clusters of lima bean, over 80 per cent of all leaves that were located around a single leaf at this distance were other leaves of the same plant, whereas this percentage dropped below 50 per cent at larger distances. Under natural conditions, resistance-inducing volatiles of lima bean move over distances at which most leaves that can receive the signal still belong to the same plant.

摘要

植物受到食草动物或病原体攻击时会释放挥发性有机化合物。邻近的植物可以接收这些挥发物,并相继诱导自身的防御武器库。然而,当这种“植物通讯”有益于独立且遗传上无关的接收者时,这似乎有违直觉,因为接收者可能与释放者竞争。为了解决这个问题,有人预测挥发性化合物在植物内部信号传递中发挥作用。我们使用野生型利马豆(Phaseolus lunatus)在田间条件下定量测量挥发性信号移动的距离,从而确定这些信号是主要在同一植物的其他部位还是在独立的植物中引发抗性。独立的接收植物在距离表达抗性的发射器 50 厘米的最大距离处表现出对食草动物或病原体的空气传播抗性。在未受干扰的利马豆簇中,距离单个叶片 50 厘米处的所有叶片中,超过 80%是同一植物的其他叶片,而在更大的距离处,这一比例下降到 50%以下。在自然条件下,利马豆诱导抗性的挥发性化合物可以在大多数可以接收信号的叶片仍属于同一植物的距离上移动。

相似文献

1
Short signalling distances make plant communication a soliloquy.
Biol Lett. 2010 Dec 23;6(6):843-5. doi: 10.1098/rsbl.2010.0440. Epub 2010 Jun 16.
3
Do plants use airborne cues to recognize herbivores on their neighbours?
Exp Appl Acarol. 2013 Mar;59(3):263-73. doi: 10.1007/s10493-012-9616-z. Epub 2012 Sep 26.
4
Air pollution impedes plant-to-plant communication by volatiles.
Ecol Lett. 2010 Sep;13(9):1172-81. doi: 10.1111/j.1461-0248.2010.01510.x. Epub 2010 Jun 29.
6
Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance.
Plant Cell Environ. 2019 Mar;42(3):959-971. doi: 10.1111/pce.13443. Epub 2018 Oct 16.
7
Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature.
PLoS One. 2009;4(5):e5450. doi: 10.1371/journal.pone.0005450. Epub 2009 May 8.
10
Plant volatiles as cues and signals in plant communication.
Plant Cell Environ. 2021 Apr;44(4):1030-1043. doi: 10.1111/pce.13910. Epub 2020 Oct 26.

引用本文的文献

1
Theoretical analyses for the evolution of biogenic volatile organic compounds (BVOC) emission strategy.
Ecol Evol. 2024 Jul 9;14(7):e11548. doi: 10.1002/ece3.11548. eCollection 2024 Jul.
2
Plant-herbivore interactions: Experimental demonstration of genetic variability in plant-plant signalling.
Evol Appl. 2023 Mar 29;16(4):772-780. doi: 10.1111/eva.13531. eCollection 2023 Apr.
3
Effect of herbivore load on VOC-mediated plant communication in potato.
Planta. 2023 Jan 23;257(2):42. doi: 10.1007/s00425-023-04075-6.
4
Population-Specific Plant-To-Plant Signaling in Wild Lima Bean.
Plants (Basel). 2022 Sep 6;11(18):2320. doi: 10.3390/plants11182320.
5
7
Plant-Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns?
Front Plant Sci. 2020 Oct 15;11:583275. doi: 10.3389/fpls.2020.583275. eCollection 2020.
8
Systemic acquired resistance networks amplify airborne defense cues.
Nat Commun. 2019 Aug 23;10(1):3813. doi: 10.1038/s41467-019-11798-2.
9
Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles.
Mol Cells. 2018 Aug 31;41(8):724-732. doi: 10.14348/molcells.2018.0104. Epub 2018 Jul 10.
10
When does it pay off to prime for defense? A modeling analysis.
New Phytol. 2017 Nov;216(3):782-797. doi: 10.1111/nph.14771. Epub 2017 Sep 11.

本文引用的文献

2
Explaining evolution of plant communication by airborne signals.
Trends Ecol Evol. 2010 Mar;25(3):137-44. doi: 10.1016/j.tree.2009.09.010.
3
Airborne induction and priming of plant defenses against a bacterial pathogen.
Plant Physiol. 2009 Dec;151(4):2152-61. doi: 10.1104/pp.109.144782. Epub 2009 Oct 7.
4
Protective perfumes: the role of vegetative volatiles in plant defense against herbivores.
Curr Opin Plant Biol. 2009 Aug;12(4):479-85. doi: 10.1016/j.pbi.2009.04.001. Epub 2009 May 19.
5
Self-recognition affects plant communication and defense.
Ecol Lett. 2009 Jun;12(6):502-6. doi: 10.1111/j.1461-0248.2009.01313.x. Epub 2009 Apr 22.
6
Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling.
J Chem Ecol. 2009 Feb;35(2):163-75. doi: 10.1007/s10886-008-9579-z. Epub 2009 Jan 22.
7
Long-distance signalling in plant defence.
Trends Plant Sci. 2008 Jun;13(6):264-72. doi: 10.1016/j.tplants.2008.03.005. Epub 2008 May 17.
8
Plant defense priming against herbivores: getting ready for a different battle.
Plant Physiol. 2008 Mar;146(3):818-24. doi: 10.1104/pp.107.113027.
9
Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants.
Science. 1983 Jul 15;221(4607):277-9. doi: 10.1126/science.221.4607.277.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验