Department of Food Science and Technology, University of California, Davis, CA 95616, USA.
Microbiology (Reading). 2010 Sep;156(Pt 9):2660-2669. doi: 10.1099/mic.0.041202-0. Epub 2010 Jun 17.
Among pathogenic strains of Listeria monocytogenes, the sigma(B) transcription factor has a pivotal role in the outcome of food-borne infections. This factor is activated by diverse stresses to provide general protection against multiple challenges, including those encountered during gastrointestinal passage. It also acts with the PrfA regulator to control virulence genes needed for entry into intestinal lumen cells. Environmental and nutritional signals modulate sigma(B) activity via a network that operates by the partner switching mechanism, in which protein interactions are controlled by serine phosphorylation. This network is well characterized in the related bacterium Bacillus subtilis. A key difference in Listeria is the presence of only one input phosphatase, RsbU, instead of the two found in B. subtilis. Here, we aim to determine whether this sole phosphatase is required to convey physical, antibiotic and nutritional stress signals, or if additional pathways might exist. To that end, we constructed L. monocytogenes 10403S strains bearing single-copy, sigma(B)-dependent opuCA-lacZ reporter fusions to determine the effects of an rsbU deletion under physiological conditions. All stresses tested, including acid, antibiotic, cold, ethanol, heat, osmotic and nutritional challenge, required RsbU to activate sigma(B). This was of particular significance for cold stress activation, which occurs via a phosphatase-independent mechanism in B. subtilis. We also assayed the effects of the D80N substitution in the upstream RsbT regulator that activates RsbU. The mutant had a phenotype consistent with low and uninducible phosphatase activity, but nonetheless responded to nutritional stress. We infer that RsbU activity but not its induction is required for nutritional signalling, which would enter the network downstream from RsbU.
在产单核细胞李斯特菌的致病性菌株中,西格玛 (B) 转录因子在食源性病原体感染的结果中起着关键作用。该因子被多种应激激活,为多种挑战提供普遍保护,包括在胃肠道通过时遇到的挑战。它还与 PrfA 调节剂一起作用,控制进入肠腔细胞所需的毒力基因。环境和营养信号通过伙伴切换机制网络调节西格玛 (B) 活性,其中蛋白质相互作用受丝氨酸磷酸化控制。该网络在相关细菌枯草芽孢杆菌中得到了很好的描述。李斯特菌的一个关键区别是只有一个输入磷酸酶 RsbU,而不是枯草芽孢杆菌中发现的两个。在这里,我们旨在确定这种单一的磷酸酶是否需要传递物理、抗生素和营养应激信号,或者是否存在其他途径。为此,我们构建了单核细胞增生李斯特菌 10403S 菌株,带有单个拷贝的、依赖于 sigma (B) 的 opuCA-lacZ 报告基因融合,以确定在生理条件下 rsbU 缺失的影响。测试的所有应激,包括酸、抗生素、冷、乙醇、热、渗透压和营养挑战,都需要 RsbU 来激活 sigma (B)。这对于枯草芽孢杆菌中发生的非依赖磷酸酶的冷应激激活尤其重要。我们还检测了激活 RsbU 的上游 RsbT 调节剂 D80N 取代的影响。突变体表现出低诱导磷酸酶活性的表型,但仍对营养应激有反应。我们推断,RsbU 活性而不是其诱导是营养信号所必需的,这将进入 RsbU 下游的网络。