Suppr超能文献

在水分胁迫下,整个番茄植株蒸腾速率的同步、自主和自我调节振荡的发展。

Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress.

机构信息

The Seagram Center for Soil and Water Sciences, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.

出版信息

J Exp Bot. 2010 Jul;61(12):3439-49. doi: 10.1093/jxb/erq168. Epub 2010 Jun 17.

Abstract

Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m(2) partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.

摘要

植物通过快速调整其水力传导性和蒸腾速率来响应许多环境变化,从而优化水利用效率并防止由于水势低而造成的损害。使用多称重传感器装置、对测量数据的时间序列分析以及残余低通滤波方法,连续监测并分析了在温度可控温室中生长的盆栽番茄(Solanum lycopersicum cv. Ailsa Craig)在充分灌溉和干旱时期的蒸腾作用。过滤后的残余时间序列的时间导数产生了整个植物蒸腾(WPT)速率的振荡行为。随后,对 WPT 振荡模式和湿芯蒸发率(垂直棉织物,0.14 m2 部分浸没在容器中的水中,容器放置在相邻的称重传感器上)之间的互相关分析表明,在持续增加的水胁迫下,WPT 速率会自主产生振荡,而当水完全可用时,这些振荡与蒸发率的波动相对应。随着蒸腾速率的降低,这些自主振荡的相对幅度增加。这些结果支持了最近的发现,即木质部张力的增加会引发液压信号,这些信号会通过植物的维管束系统瞬间传播,并控制叶片导度。还讨论了 WPT 速率中同步振荡在消除关键木质部张力点和防止栓塞方面的调节作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/541a/2905204/fa13491ae901/jexboterq168f02_lw.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验