Suppr超能文献

上皮-间充质转化的分子和细胞策略中的多样性:来自神经嵴的见解。

Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: Insights from the neural crest.

机构信息

CNRS, Laboratoire de Biologie du Développement, Paris, France.

出版信息

Cell Adh Migr. 2010 Jul-Sep;4(3):458-82. doi: 10.4161/cam.4.3.12501. Epub 2010 Jul 27.

Abstract

Although epithelial to mesenchymal transitions (EMT) are often viewed as a unique event, they are characterized by a great diversity of cellular processes resulting in strikingly different outcomes. They may be complete or partial, massive or progressive, and lead to the complete disruption of the epithelium or leave it intact. Although the molecular and cellular mechanisms of EMT are being elucidated owing chiefly from studies on transformed epithelial cell lines cultured in vitro or from cancer cells, the basis of the diversity of EMT processes remains poorly understood. Clues can be collected from EMT occuring during embryonic development and which affect equally tissues of ectodermal, endodermal or mesodermal origins. Here, based on our current knowledge of the diversity of processes underlying EMT of neural crest cells in the vertebrate embryo, we propose that the time course and extent of EMT do not depend merely on the identity of the EMT transcriptional regulators and their cellular effectors but rather on the combination of molecular players recruited and on the possible coordination of EMT with other cellular processes.

摘要

尽管上皮-间充质转化 (EMT) 通常被视为一个独特的事件,但它具有多种细胞过程的特点,导致截然不同的结果。它们可以是完全的或部分的,大量的或渐进的,并导致上皮的完全破坏或使其保持完整。尽管 EMT 的分子和细胞机制主要通过体外培养的转化上皮细胞系或癌细胞的研究来阐明,但 EMT 过程多样性的基础仍知之甚少。可以从胚胎发育过程中发生的 EMT 中收集线索,这些 EMT 同样影响外胚层、内胚层或中胚层来源的组织。在这里,基于我们目前对脊椎动物胚胎神经嵴细胞 EMT 所涉及的过程多样性的了解,我们提出 EMT 的时间进程和程度不仅取决于 EMT 转录调节因子及其细胞效应物的身份,还取决于募集的分子参与者的组合,以及 EMT 与其他细胞过程的可能协调。

相似文献

1
Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: Insights from the neural crest.
Cell Adh Migr. 2010 Jul-Sep;4(3):458-82. doi: 10.4161/cam.4.3.12501. Epub 2010 Jul 27.
2
Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT.
J Cell Biol. 2013 Dec 9;203(5):835-47. doi: 10.1083/jcb.201305050. Epub 2013 Dec 2.
3
MMP14 Regulates Cranial Neural Crest Epithelial-to-Mesenchymal Transition and Migration.
Dev Dyn. 2018 Sep;247(9):1083-1092. doi: 10.1002/dvdy.24661. Epub 2018 Sep 9.
4
Cadherin-6B proteolysis promotes the neural crest cell epithelial-to-mesenchymal transition through transcriptional regulation.
J Cell Biol. 2016 Dec 5;215(5):735-747. doi: 10.1083/jcb.201604006. Epub 2016 Nov 17.
5
Epithelial to mesenchymal transition during mammalian neural crest cell delamination.
Semin Cell Dev Biol. 2023 Mar 30;138:54-67. doi: 10.1016/j.semcdb.2022.02.018. Epub 2022 Mar 8.
6
A regulatory sub-circuit downstream of Wnt signaling controls developmental transitions in neural crest formation.
PLoS Genet. 2021 Jan 19;17(1):e1009296. doi: 10.1371/journal.pgen.1009296. eCollection 2021 Jan.
7
"Beyond transcription: How post-transcriptional mechanisms drive neural crest EMT".
Genesis. 2024 Feb;62(1):e23553. doi: 10.1002/dvg.23553. Epub 2023 Sep 21.
8
p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes.
Development. 2011 May;138(9):1827-38. doi: 10.1242/dev.053645. Epub 2011 Mar 29.
9
Network architecture and regulatory logic in neural crest development.
Wiley Interdiscip Rev Syst Biol Med. 2020 Mar;12(2):e1468. doi: 10.1002/wsbm.1468. Epub 2019 Nov 8.
10
Epithelium-mesenchyme transition during neural crest development.
Acta Anat (Basel). 1995;154(1):63-78. doi: 10.1159/000147752.

引用本文的文献

3
Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.
Front Cell Dev Biol. 2025 Jan 6;12:1457506. doi: 10.3389/fcell.2024.1457506. eCollection 2024.
4
BMP4 regulates differentiation of nestin-positive stem cells into melanocytes.
Cell Mol Life Sci. 2025 Jan 12;82(1):41. doi: 10.1007/s00018-024-05564-x.
5
Expansion of a neural crest gene signature following ectopic MYCN expression in sympathoadrenal lineage cells in vivo.
PLoS One. 2024 Sep 18;19(9):e0310727. doi: 10.1371/journal.pone.0310727. eCollection 2024.
6
Pediatric Diffuse Midline Glioma H3K27-Altered: From Developmental Origins to Therapeutic Challenges.
Cancers (Basel). 2024 May 10;16(10):1814. doi: 10.3390/cancers16101814.
7
9
Contribution of neural crest-derived stem cells and nasal chondrocytes to articular cartilage regeneration.
Cell Mol Life Sci. 2020 Dec;77(23):4847-4859. doi: 10.1007/s00018-020-03567-y. Epub 2020 Jun 5.

本文引用的文献

1
Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3570-5. doi: 10.1073/pnas.0906596107. Epub 2010 Feb 5.
2
CHD7 cooperates with PBAF to control multipotent neural crest formation.
Nature. 2010 Feb 18;463(7283):958-62. doi: 10.1038/nature08733. Epub 2010 Feb 3.
5
Epithelial-mesenchymal transitions in development and disease.
Cell. 2009 Nov 25;139(5):871-90. doi: 10.1016/j.cell.2009.11.007.
8
SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14884-9. doi: 10.1073/pnas.0902042106. Epub 2009 Aug 17.
10
Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease.
J Clin Invest. 2009 Jun;119(6):1438-49. doi: 10.1172/JCI38019. Epub 2009 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验