Fakultät für Informatik, TU Dortmund, 44221 Dortmund, Germany.
Evol Comput. 2010 Fall;18(3):357-81. doi: 10.1162/EVCO_a_00014.
We present a natural vector-valued fitness function f for the multi-objective shortest path problem, which is a fundamental multi-objective combinatorial optimization problem known to be NP-hard. Thereafter, we conduct a rigorous runtime analysis of a simple evolutionary algorithm (EA) optimizing f. Interestingly, this simple general algorithm is a fully polynomial-time randomized approximation scheme (FPRAS) for the problem under consideration, which exemplifies how EAs are able to find good approximate solutions for hard problems. Furthermore, we present lower bounds for the worst-case optimization time.
我们提出了一个自然的向量值适应度函数 f 用于多目标最短路径问题,这是一个基本的多目标组合优化问题,已知是 NP 难的。此后,我们对优化 f 的简单进化算法(EA)进行了严格的运行时间分析。有趣的是,这个简单的通用算法是所考虑问题的完全多项式时间随机近似方案(FPRAS),这说明了进化算法如何能够为困难问题找到良好的近似解。此外,我们还给出了最坏情况下优化时间的下界。