Suppr超能文献

一种用于预测毛状根培养中最大生物量产量的体外培养参数的神经网络方法。

A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures.

作者信息

Prakash Om, Mehrotra Shakti, Krishna Aneesh, Mishra Bhartendu N

机构信息

Department of Biotechnology, Institute of Engineering and Technology, Sitapur Road, Lucknow, India.

出版信息

J Theor Biol. 2010 Aug 21;265(4):579-85. doi: 10.1016/j.jtbi.2010.05.020. Epub 2010 May 24.

Abstract

The present study deals with ANN based prediction of culture parameters in terms of inoculum density, pH and volume of growth medium per culture vessel and sucrose content of the growth medium for Glycyrrhiza hairy root cultures. This kind of study could be a model system in exploitation of hairy root cultures for commercial production of pharmaceutical compounds using large bioreactors. The study is aimed to evaluate the efficiency of regression neural network and back propagation neural network for the prediction of optimal culture conditions for maximum hairy root biomass yield. The training data for regression and back propagation networks were primed on the basis of function approximation, where final biomass fresh weight (f(wt)) was considered as a function of culture parameters. On this basis the variables in culture conditions were described in the form of equations which are for inoculum density: y=0.02x+0.04, for pH of growth medium: y=x+2.8, for sucrose content in medium: y=9.9464x+(-9.7143) and for culture medium per culture vessel: y=10x. The fresh weight values obtained from training data were considered as target values and further compared with predicted fresh weight values. The empirical data were used as testing data and further compared with values predicted from trained networks. Standard MATLAB inbuilt generalized regression network with radial basis function radbas as transfer function in layer one and purelin in layer two and back propagation having purelin as transfer function in output layer and logsig in hidden layer were used. Although in comparative assessment both the networks were found efficient for prediction of optimal culture conditions for high biomass production, more accuracy in results was seen with regression network.

摘要

本研究涉及基于人工神经网络(ANN)对甘草毛状根培养中接种密度、pH值、每个培养容器中生长培养基的体积以及生长培养基中蔗糖含量等培养参数的预测。这类研究可以成为利用大型生物反应器进行药用化合物商业化生产的毛状根培养开发的模型系统。该研究旨在评估回归神经网络和反向传播神经网络在预测最大毛状根生物量产量的最佳培养条件方面的效率。回归网络和反向传播网络的训练数据基于函数逼近进行准备,其中最终生物量鲜重(f(wt))被视为培养参数的函数。在此基础上,培养条件中的变量以方程形式描述,接种密度方程为:y = 0.02x + 0.04;生长培养基pH值方程为:y = x + 2.8;培养基中蔗糖含量方程为:y = 9.9464x + (-9.7143);每个培养容器中培养基体积方程为:y = 10x。从训练数据获得的鲜重值被视为目标值,并进一步与预测的鲜重值进行比较。经验数据用作测试数据,并进一步与从训练网络预测的值进行比较。使用了标准MATLAB内置的广义回归网络,其第一层以径向基函数radbas作为传递函数,第二层以purelin作为传递函数;反向传播网络在输出层以purelin作为传递函数,隐藏层以logsig作为传递函数。尽管在比较评估中发现这两种网络在预测高生物量生产的最佳培养条件方面都很有效,但回归网络的结果准确性更高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验