Interactive Graphics Systems, Dept, of Computer Science, Technische Universität Darmstadt, Germany.
BMC Bioinformatics. 2010 Jun 17;11:330. doi: 10.1186/1471-2105-11-330.
Selective pressure in molecular evolution leads to uneven distributions of amino acids and nucleotides. In fact one observes correlations among such constituents due to a large number of biophysical mechanisms (folding properties, electrostatics, ...). To quantify these correlations the mutual information -after proper normalization--has proven most effective. The challenge is to navigate the large amount of data, which in a study for a typical protein cannot simply be plotted.
To visually analyze mutual information we developed a matrix visualization tool that allows different views on the mutual information matrix: filtering, sorting, and weighting are among them. The user can interactively navigate a huge matrix in real-time and search e.g., for patterns and unusual high or low values. A computation of the mutual information matrix for a sequence alignment in FASTA-format is possible. The respective stand-alone program computes in addition proper normalizations for a null model of neutral evolution and maps the mutual information to Z-scores with respect to the null model.
The new tool allows to compute and visually analyze sequence data for possible co-evolutionary signals. The tool has already been successfully employed in evolutionary studies on HIV1 protease and acetylcholinesterase. The functionality of the tool was defined by users using the tool in real-world research. The software can also be used for visual analysis of other matrix-like data, such as information obtained by DNA microarray experiments. The package is platform-independently implemented in Java and free for academic use under a GPL license.
分子进化中的选择压力导致氨基酸和核苷酸的不均匀分布。事实上,由于大量的生物物理机制(折叠特性、静电学等),人们观察到这些成分之间存在相关性。为了量化这些相关性,经过适当归一化后的互信息被证明是最有效的。挑战在于处理大量的数据,对于典型蛋白质的研究,这些数据不能简单地绘制出来。
为了直观地分析互信息,我们开发了一种矩阵可视化工具,允许从不同角度观察互信息矩阵:过滤、排序和加权等。用户可以实时交互式地浏览庞大的矩阵,并搜索模式和异常高或低的值。FASTA 格式的序列比对的互信息矩阵的计算是可能的。相应的独立程序还计算了中性进化的零模型的适当归一化,并将互信息映射到相对于零模型的 Z 分数。
新工具允许计算和直观分析序列数据,以寻找可能的共进化信号。该工具已成功应用于 HIV1 蛋白酶和乙酰胆碱酯酶的进化研究中。工具的功能是由使用该工具进行实际研究的用户定义的。该软件还可用于其他类似矩阵数据的可视化分析,例如通过 DNA 微阵列实验获得的信息。该软件包是平台独立的,用 Java 实现,并根据 GPL 许可证免费供学术使用。