Suppr超能文献

脱硫弧菌 RS-1 含有一个富含铁和磷的细胞器,与它的子弹形磁小体不同。

Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12263-8. doi: 10.1073/pnas.1001290107. Epub 2010 Jun 21.

Abstract

Intracellular magnetite crystal formation by magnetotactic bacteria has emerged as a powerful model for investigating the cellular and molecular mechanisms of biomineralization, a process common to all branches of life. Although magnetotactic bacteria are phylogenetically diverse and their crystals morphologically diverse, studies to date have focused on a few, closely related species with similar crystal habits. Here, we investigate the process of magnetite biomineralization in Desulfovibrio magneticus sp. RS-1, the only reported species of cultured magnetotactic bacteria that is outside of the alpha-Proteobacteria and that forms bullet-shaped crystals. Using a variety of high-resolution imaging and analytical tools, we show that RS-1 cells form amorphous, noncrystalline granules containing iron and phosphorus before forming magnetite crystals. Using NanoSIMS (dynamic secondary ion mass spectroscopy), we show that the iron-phosphorus granules and the magnetite crystals are likely formed through separate cellular processes. Analysis of the cellular ultrastructure of RS-1 using cryo-ultramicrotomy, cryo-electron tomography, and tomography of ultrathin sections reveals that the magnetite crystals are not surrounded by membranes but that the iron-phosphorus granules are surrounded by membranous compartments. The varied cellular paths for the formation of these two minerals lead us to suggest that the iron-phosphorus granules constitute a distinct bacterial organelle.

摘要

趋磁细菌细胞内磁铁矿晶体的形成已成为研究生物矿化细胞和分子机制的有力模型,生物矿化是所有生命分支共有的过程。尽管趋磁细菌在系统发育上具有多样性,其晶体在形态上也具有多样性,但迄今为止的研究主要集中在少数几个具有相似晶体习性的密切相关的物种上。在这里,我们研究了脱硫弧菌 RS-1 中磁铁矿生物矿化的过程,它是唯一报道的具有培养的趋磁细菌的物种,它不在α变形菌门内,并且形成子弹形状的晶体。使用各种高分辨率成像和分析工具,我们表明 RS-1 细胞在形成磁铁矿晶体之前形成含有铁和磷的无定形、非晶态颗粒。使用 NanoSIMS(动态二次离子质谱),我们表明铁-磷颗粒和磁铁矿晶体可能是通过单独的细胞过程形成的。使用冷冻超微切割、冷冻电子断层扫描和超薄切片的断层扫描对 RS-1 的细胞超微结构进行分析表明,磁铁矿晶体不是被膜包围,而是铁-磷颗粒被膜性隔室包围。这两种矿物质形成的不同细胞途径使我们提出铁-磷颗粒构成了一个独特的细菌细胞器。

相似文献

1
Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12263-8. doi: 10.1073/pnas.1001290107. Epub 2010 Jun 21.
2
Genome Editing Method for the Anaerobic Magnetotactic Bacterium Desulfovibrio magneticus RS-1.
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01724-18. Print 2018 Nov 15.
6
A genetic strategy for probing the functional diversity of magnetosome formation.
PLoS Genet. 2015 Jan 8;11(1):e1004811. doi: 10.1371/journal.pgen.1004811. eCollection 2015 Jan.
7
Phylogenetic and Structural Identification of a Novel Magnetotactic Strain, WYHR-1, from a Freshwater Lake.
Appl Environ Microbiol. 2019 Jul 1;85(14). doi: 10.1128/AEM.00731-19. Print 2019 Jul 15.
8
The bacterial magnetosome: a unique prokaryotic organelle.
J Mol Microbiol Biotechnol. 2013;23(1-2):63-80. doi: 10.1159/000346543. Epub 2013 Apr 18.
10
Magnetic microbes: Bacterial magnetite biomineralization.
Semin Cell Dev Biol. 2015 Oct;46:36-43. doi: 10.1016/j.semcdb.2015.09.003. Epub 2015 Sep 14.

引用本文的文献

1
Revealing the diversity of bacterial and archaeal organelles via comparative genomics.
Mol Biol Cell. 2025 May 1;36(5):pe4. doi: 10.1091/mbc.E20-08-0564.
2
Calprotectin elicits aberrant iron starvation responses in under anaerobic conditions.
J Bacteriol. 2025 Apr 17;207(4):e0002925. doi: 10.1128/jb.00029-25. Epub 2025 Mar 26.
4
Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes.
Int J Nanomedicine. 2025 Jan 11;20:403-444. doi: 10.2147/IJN.S462031. eCollection 2025.
5
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
6
Bacterial Organelles in Iron Physiology.
Mol Microbiol. 2024 Dec;122(6):914-928. doi: 10.1111/mmi.15330. Epub 2024 Nov 15.
8
Starvation helps transition to abundance - a ferrosome story.
Trends Microbiol. 2024 Mar;32(3):219-220. doi: 10.1016/j.tim.2024.01.006. Epub 2024 Jan 28.
10
Clostridioides difficile ferrosome organelles combat nutritional immunity.
Nature. 2023 Nov;623(7989):1009-1016. doi: 10.1038/s41586-023-06719-9. Epub 2023 Nov 15.

本文引用的文献

1
Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle.
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5593-8. doi: 10.1073/pnas.0914439107. Epub 2010 Mar 8.
2
Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria.
J Colloid Interface Sci. 2010 Mar 1;343(1):65-70. doi: 10.1016/j.jcis.2009.11.043. Epub 2009 Nov 26.
3
Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria.
Genome Res. 2009 Oct;19(10):1801-8. doi: 10.1101/gr.088906.108. Epub 2009 Aug 12.
5
Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
Adv Appl Microbiol. 2009;68:41-98. doi: 10.1016/S0065-2164(09)01202-7.
6
Advances in imaging secondary ion mass spectrometry for biological samples.
Annu Rev Biophys. 2009;38:53-74. doi: 10.1146/annurev.biophys.050708.133634.
7
Bio-directed synthesis and assembly of nanomaterials.
Chem Soc Rev. 2008 Nov;37(11):2403-12. doi: 10.1039/b702825n. Epub 2008 Sep 26.
8
Intracellular precipitation of hydroxyapatite mineral and implications for pathologic calcification.
J Struct Biol. 2008 Jun;162(3):468-79. doi: 10.1016/j.jsb.2008.03.003. Epub 2008 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验