Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12263-8. doi: 10.1073/pnas.1001290107. Epub 2010 Jun 21.
Intracellular magnetite crystal formation by magnetotactic bacteria has emerged as a powerful model for investigating the cellular and molecular mechanisms of biomineralization, a process common to all branches of life. Although magnetotactic bacteria are phylogenetically diverse and their crystals morphologically diverse, studies to date have focused on a few, closely related species with similar crystal habits. Here, we investigate the process of magnetite biomineralization in Desulfovibrio magneticus sp. RS-1, the only reported species of cultured magnetotactic bacteria that is outside of the alpha-Proteobacteria and that forms bullet-shaped crystals. Using a variety of high-resolution imaging and analytical tools, we show that RS-1 cells form amorphous, noncrystalline granules containing iron and phosphorus before forming magnetite crystals. Using NanoSIMS (dynamic secondary ion mass spectroscopy), we show that the iron-phosphorus granules and the magnetite crystals are likely formed through separate cellular processes. Analysis of the cellular ultrastructure of RS-1 using cryo-ultramicrotomy, cryo-electron tomography, and tomography of ultrathin sections reveals that the magnetite crystals are not surrounded by membranes but that the iron-phosphorus granules are surrounded by membranous compartments. The varied cellular paths for the formation of these two minerals lead us to suggest that the iron-phosphorus granules constitute a distinct bacterial organelle.
趋磁细菌细胞内磁铁矿晶体的形成已成为研究生物矿化细胞和分子机制的有力模型,生物矿化是所有生命分支共有的过程。尽管趋磁细菌在系统发育上具有多样性,其晶体在形态上也具有多样性,但迄今为止的研究主要集中在少数几个具有相似晶体习性的密切相关的物种上。在这里,我们研究了脱硫弧菌 RS-1 中磁铁矿生物矿化的过程,它是唯一报道的具有培养的趋磁细菌的物种,它不在α变形菌门内,并且形成子弹形状的晶体。使用各种高分辨率成像和分析工具,我们表明 RS-1 细胞在形成磁铁矿晶体之前形成含有铁和磷的无定形、非晶态颗粒。使用 NanoSIMS(动态二次离子质谱),我们表明铁-磷颗粒和磁铁矿晶体可能是通过单独的细胞过程形成的。使用冷冻超微切割、冷冻电子断层扫描和超薄切片的断层扫描对 RS-1 的细胞超微结构进行分析表明,磁铁矿晶体不是被膜包围,而是铁-磷颗粒被膜性隔室包围。这两种矿物质形成的不同细胞途径使我们提出铁-磷颗粒构成了一个独特的细菌细胞器。