Suppr超能文献

生长中的视觉皮层中柱状结构的重组。

Reorganization of columnar architecture in the growing visual cortex.

机构信息

Max Planck Institute for Dynamics and Self-Organization, Göttingen 37073, Germany.

出版信息

Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12293-8. doi: 10.1073/pnas.0913020107. Epub 2010 Jun 21.

Abstract

Many cortical areas increase in size considerably during postnatal development, progressively displacing neuronal cell bodies from each other. At present, little is known about how cortical growth affects the development of neuronal circuits. Here, in acute and chronic experiments, we study the layout of ocular dominance (OD) columns in cat primary visual cortex during a period of substantial postnatal growth. We find that despite a considerable size increase of primary visual cortext, the spacing between columns is largely preserved. In contrast, their spatial arrangement changes systematically over this period. Whereas in young animals columns are more band-like, layouts become more isotropic in mature animals. We propose a novel mechanism of growth-induced reorganization that is based on the "zigzag instability," a dynamical instability observed in several inanimate pattern forming systems. We argue that this mechanism is inherent to a wide class of models for the activity-dependent formation of OD columns. Analyzing one representative of this class, the Elastic Network model, we show that this mechanism can account for the preservation of column spacing and the specific mode of reorganization of OD columns that we observe. We conclude that column width is preserved by systematic reorganization of neuronal selectivities during cortical expansion and that this reorganization is well described by the zigzag instability. Our work suggests that cortical circuits may remain plastic for an extended period in development to facilitate the modification of neuronal circuits to adjust for cortical growth.

摘要

许多皮质区域在出生后发育过程中会显著增大,逐渐使神经元细胞体彼此移位。目前,人们对皮质生长如何影响神经元回路的发育知之甚少。在这里,在急性和慢性实验中,我们研究了在大量出生后生长期间猫初级视觉皮层中眼优势(OD)柱的布局。我们发现,尽管初级视觉皮层的大小有了相当大的增加,但柱之间的间距在很大程度上得以保留。相比之下,它们的空间排列在此期间会发生系统变化。尽管在年轻动物中,柱更像带状,但是在成熟动物中,其布局变得更加各向同性。我们提出了一种基于“之字形不稳定性”的新的生长诱导重组机制,该不稳定性在几种无生命模式形成系统中被观察到。我们认为,这种机制是 OD 柱的活性依赖性形成的广泛模型类别的固有机制。通过分析该模型类别的一个代表,弹性网络模型,我们表明该机制可以解释我们观察到的柱间距的保留和 OD 柱的特定重组模式。我们得出结论,在皮质扩张过程中,通过神经元选择性的系统重组来保持柱宽,并且这种重组可以很好地由之字形不稳定性来描述。我们的工作表明,在发育过程中,皮质电路可能会保持较长时间的可塑性,以促进神经元电路的修改以适应皮质生长。

相似文献

1
Reorganization of columnar architecture in the growing visual cortex.生长中的视觉皮层中柱状结构的重组。
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12293-8. doi: 10.1073/pnas.0913020107. Epub 2010 Jun 21.

引用本文的文献

2
Theoretical Models of Neural Development.神经发育的理论模型
iScience. 2018 Oct 26;8:183-199. doi: 10.1016/j.isci.2018.09.017. Epub 2018 Sep 27.
4
Are visual peripheries forever young?视觉周边区域会永葆“年轻”吗?
Neural Plast. 2015;2015:307929. doi: 10.1155/2015/307929. Epub 2015 Apr 6.
7
Coordinated optimization of visual cortical maps (II) numerical studies.视皮层图谱的协调优化(二)数值研究。
PLoS Comput Biol. 2012;8(11):e1002756. doi: 10.1371/journal.pcbi.1002756. Epub 2012 Nov 8.
8
Coverage, continuity, and visual cortical architecture.覆盖范围、连续性与视觉皮层结构
Neural Syst Circuits. 2011 Dec 29;1:17. doi: 10.1186/2042-1001-1-17.
9
Evolutionary constraints on visual cortex architecture from the dynamics of hallucinations.从幻觉的动态看视皮层结构的进化约束。
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):606-9. doi: 10.1073/pnas.1118672109. Epub 2011 Dec 27.

本文引用的文献

1
Growth of the laboratory mouse.实验鼠的生长。
Theor Appl Genet. 1968 Jul;38(7):304-8. doi: 10.1007/BF01297571.
2
Integration of contractile forces during tissue invagination.组织内陷过程中收缩力的整合。
J Cell Biol. 2010 Mar 8;188(5):735-49. doi: 10.1083/jcb.200910099. Epub 2010 Mar 1.
5
Interareal coordination of columnar architectures during visual cortical development.视皮层发育过程中柱状结构的区域间协调。
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17205-10. doi: 10.1073/pnas.0901615106. Epub 2009 Sep 15.
6
Stretch growth of integrated axon tracts: extremes and exploitations.整合轴突束的拉伸生长:极限与应用。
Prog Neurobiol. 2009 Nov;89(3):231-9. doi: 10.1016/j.pneurobio.2009.07.006. Epub 2009 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验