Semiconductor Electronics Division, Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8120, USA.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12080-5. doi: 10.1073/pnas.1002194107. Epub 2010 Jun 21.
Nanometer-scale pores have demonstrated potential for the electrical detection, quantification, and characterization of molecules for biomedical applications and the chemical analysis of polymers. Despite extensive research in the nanopore sensing field, there is a paucity of theoretical models that incorporate the interactions between chemicals (i.e., solute, solvent, analyte, and nanopore). Here, we develop a model that simultaneously describes both the current blockade depth and residence times caused by individual poly(ethylene glycol) (PEG) molecules in a single alpha-hemolysin ion channel. Modeling polymer-cation binding leads to a description of two significant effects: a reduction in the mobile cation concentration inside the pore and an increase in the affinity between the polymer and the pore. The model was used to estimate the free energy of formation for K(+)-PEG inside the nanopore (approximately -49.7 meV) and the free energy of PEG partitioning into the nanopore ( approximately 0.76 meV per ethylene glycol monomer). The results suggest that rational, physical models for the analysis of analyte-nanopore interactions will develop the full potential of nanopore-based sensing for chemical and biological applications.
纳米级孔在电检测、定量和分子特征化方面具有用于生物医学应用和聚合物化学分析的潜力。尽管在纳米孔传感领域进行了广泛的研究,但很少有理论模型将化学物质(即溶质、溶剂、分析物和纳米孔)之间的相互作用纳入其中。在这里,我们开发了一个模型,该模型同时描述了单个α-溶血素离子通道中单个聚乙二醇(PEG)分子引起的电流阻断深度和停留时间。对聚合物-阳离子结合的建模导致了两个重要影响的描述:孔内可动阳离子浓度的降低以及聚合物与孔之间亲和力的增加。该模型用于估计纳米孔内 K(+)-PEG 的形成自由能(约-49.7 meV)和 PEG 分配到纳米孔内的自由能(每个乙二醇单体约 0.76 meV)。结果表明,用于分析分析物-纳米孔相互作用的合理物理模型将开发基于纳米孔的传感在化学和生物应用中的全部潜力。