Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Nano Lett. 2024 Feb 7;24(5):1494-1501. doi: 10.1021/acs.nanolett.3c03593. Epub 2024 Jan 24.
The rapid progress in nanopore sensing has sparked interest in protein sequencing. Despite recent notable advancements in amino acid recognition using nanopores, chemical modifications usually employed in this process still need further refinements. One of the challenges is to enhance the chemical specificity to avoid downstream misidentification of amino acids. By employing adamantane to label proteinogenic amino acids, we developed an approach to fingerprint individual amino acids using the wild-type α-hemolysin nanopore. The unique structure of adamantane-labeled amino acids (ALAAs) improved the spatial resolution, resulting in distinctive current signals. Various nanopore parameters were explored using a machine-learning algorithm and achieved a validation accuracy of 81.3% for distinguishing nine selected amino acids. Our results not only advance the effort in single-molecule protein characterization using nanopores but also offer a potential platform for studying intrinsic and variant structures of individual molecules.
纳米孔传感技术的快速发展引发了人们对蛋白质测序的兴趣。尽管最近在使用纳米孔进行氨基酸识别方面取得了显著进展,但该过程中通常使用的化学修饰仍需要进一步改进。其中一个挑战是提高化学特异性,以避免下游氨基酸的错误识别。通过使用金刚烷标记蛋白质氨基酸,我们开发了一种使用野生型α-溶血素纳米孔对单个氨基酸进行指纹识别的方法。金刚烷标记氨基酸(ALAAs)的独特结构提高了空间分辨率,产生了独特的电流信号。使用机器学习算法探索了各种纳米孔参数,并实现了对 9 种选定氨基酸进行区分的验证准确率为 81.3%。我们的研究结果不仅推进了使用纳米孔进行单分子蛋白质特征分析的研究,而且为研究单个分子的固有和变体结构提供了一个潜在的平台。