Suppr超能文献

用于单分子时间组学的纳米孔方法:前景与挑战。

Nanopore approaches for single-molecule temporal omics: promises and challenges.

作者信息

Li Meng-Yin, Jiang Jie, Li Jun-Ge, Niu Hongyan, Ying Yi-Lun, Tian Ruijun, Long Yi-Tao

机构信息

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.

出版信息

Nat Methods. 2025 Feb;22(2):241-253. doi: 10.1038/s41592-024-02492-3. Epub 2024 Nov 18.

Abstract

The great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics. In this Perspective, we explore the potential application of nanopores for single-molecule temporal omics to characterize individual molecules beyond mass, in both a single-molecule and high-throughput manner. Accordingly, recent advances in nanopores available for single-molecule temporal omics are reviewed from the view of single-molecule mass identification, revealing single-molecule heterogeneity and illustrating temporal evolution. Furthermore, we discuss the primary challenges associated with using nanopores for single-molecule temporal omics in complex biological samples, and present the potential strategies and notes to respond to these challenges.

摘要

单细胞内巨大的分子异质性要求从单分子角度进行组学分析。此外,考虑到细胞内持续的代谢和通讯,确定分子库的时间序列变化至关重要,而不是仅在一个时间点获取数据。因此,迫切需要开发一种用于这种组学分析的单分子策略,以阐明生物系统的异质性和时间动态。在本观点文章中,我们探索纳米孔在单分子时间组学中的潜在应用,以单分子和高通量方式表征除质量之外的单个分子。相应地,从单分子质量鉴定的角度综述了可用于单分子时间组学的纳米孔的最新进展,揭示了单分子异质性并阐明了时间演变。此外,我们讨论了在复杂生物样品中使用纳米孔进行单分子时间组学所面临的主要挑战,并提出了应对这些挑战的潜在策略和注意事项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验