Suppr超能文献

用于结核病药物研发的协作数据库和计算模型。

A collaborative database and computational models for tuberculosis drug discovery.

作者信息

Ekins Sean, Bradford Justin, Dole Krishna, Spektor Anna, Gregory Kellan, Blondeau David, Hohman Moses, Bunin Barry A

机构信息

Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA.

出版信息

Mol Biosyst. 2010 May;6(5):840-51. doi: 10.1039/b917766c. Epub 2010 Feb 9.

Abstract

The search for molecules with activity against Mycobacterium tuberculosis (Mtb) is employing many approaches in parallel including high throughput screening and computational methods. We have developed a database (CDD TB) to capture public and private Mtb data while enabling data mining and collaborations with other researchers. We have used the public data along with several cheminformatics approaches to produce models that describe active and inactive compounds. We have compared these datasets to those for known FDA approved drugs and between Mtb active and inactive compounds. The distribution of polar surface area and pK(a) of active compounds was found to be a statistically significant determinant of activity against Mtb. Hydrophobicity was not always statistically significant. Bayesian classification models for 220, 463 molecules were generated and tested with external molecules, and enabled the discrimination of active or inactive substructures from other datasets in the CDD TB. Computational pharmacophores based on known Mtb drugs were able to map to and retrieve a small subset of some of the Mtb datasets, including a high percentage of Mtb actives. The combination of the database, dataset analysis, Bayesian and pharmacophore models provides new insights into molecular properties and features that are determinants of activity in whole cells. This study provides novel insights into the key 1D molecular descriptors, 2D chemical substructures and 3D pharmacophores which can be used to mine the chemistry space, prioritizing those molecules with a higher probability of activity against Mtb.

摘要

寻找具有抗结核分枝杆菌(Mtb)活性的分子正在同时采用多种方法,包括高通量筛选和计算方法。我们开发了一个数据库(CDD TB)来收集公共和私人的Mtb数据,同时实现数据挖掘以及与其他研究人员的合作。我们利用公共数据以及多种化学信息学方法来生成描述活性和非活性化合物的模型。我们将这些数据集与已知的FDA批准药物的数据集进行了比较,并在Mtb活性和非活性化合物之间进行了比较。发现活性化合物的极性表面积和pK(a)分布是抗Mtb活性的一个具有统计学意义的决定因素。疏水性并非总是具有统计学意义。生成了针对220,463个分子的贝叶斯分类模型,并用外部分子进行了测试,能够从CDD TB中的其他数据集中区分出活性或非活性子结构。基于已知Mtb药物的计算药效团能够映射到并检索部分Mtb数据集的一个小子集,包括高比例的Mtb活性物质。数据库、数据集分析、贝叶斯模型和药效团模型的结合为全细胞活性决定因素的分子特性和特征提供了新的见解。这项研究为关键的一维分子描述符、二维化学子结构和三维药效团提供了新颖的见解,可用于挖掘化学空间,优先选择那些对Mtb具有更高活性概率的分子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验