Suppr超能文献

运用化学信息学方法和通路分析来鉴定对结核分枝杆菌具有整体细胞活性的分子。

Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis.

机构信息

SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, USA.

出版信息

Pharm Res. 2012 Aug;29(8):2115-27. doi: 10.1007/s11095-012-0741-5. Epub 2012 Apr 4.

Abstract

PURPOSE

New strategies for developing inhibitors of Mycobacterium tuberculosis (Mtb) are required in order to identify the next generation of tuberculosis (TB) drugs. Our approach leverages the integration of intensive data mining and curation and computational approaches, including cheminformatics combined with bioinformatics, to suggest biological targets and their small molecule modulators.

METHODS

We now describe an approach that uses the TBCyc pathway and genome database, the Collaborative Drug Discovery database of molecules with activity against Mtb and their associated targets, a 3D pharmacophore approach and Bayesian models of TB activity in order to select pathways and metabolites and ultimately prioritize molecules that may be acting as substrate mimics and exhibit activity against TB.

RESULTS

In this study we combined the TB cheminformatics and pathways databases that enabled us to computationally search >80,000 vendor available molecules and ultimately test 23 compounds in vitro that resulted in two compounds (N-(2-furylmethyl)-N'-[(5-nitro-3-thienyl)carbonyl]thiourea and N-[(5-nitro-3-thienyl)carbonyl]-N'-(2-thienylmethyl)thiourea) proposed as mimics of D-fructose 1,6 bisphosphate, (MIC of 20 and 40 μg/ml, respectively).

CONCLUSION

This is a simple yet novel approach that has the potential to identify inhibitors of bacterial growth as illustrated by compounds identified in this study that have activity against Mtb.

摘要

目的

为了确定下一代结核病(TB)药物,需要开发新的结核分枝杆菌(Mtb)抑制剂的策略。我们的方法利用了密集的数据挖掘和策展以及计算方法的整合,包括化学信息学与生物信息学相结合,以提出生物靶标及其小分子调节剂。

方法

我们现在描述一种方法,该方法使用 TBCyc 途径和基因组数据库、具有抗 Mtb 活性的分子及其相关靶标的协作药物发现数据库、3D 药效团方法和 TB 活性的贝叶斯模型,以选择途径和代谢物,并最终优先选择可能作为底物模拟物并具有抗 TB 活性的分子。

结果

在这项研究中,我们结合了 TB 化学信息学和途径数据库,使我们能够在计算上搜索超过 80,000 种供应商提供的分子,并最终在体外测试了 23 种化合物,其中两种化合物(N-(2-呋喃基甲基)-N'-[(5-硝基-3-噻吩基)羰基]硫脲和 N-(5-硝基-3-噻吩基)羰基]-N' -(2-噻吩基甲基)硫脲)被提出作为 D-果糖 1,6 二磷酸的模拟物(MIC 分别为 20 和 40μg/ml)。

结论

这是一种简单而新颖的方法,具有识别细菌生长抑制剂的潜力,正如本研究中鉴定的具有抗 Mtb 活性的化合物所证明的那样。

相似文献

2
Combining Metabolite-Based Pharmacophores with Bayesian Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.
PLoS One. 2015 Oct 30;10(10):e0141076. doi: 10.1371/journal.pone.0141076. eCollection 2015.
3
Validating new tuberculosis computational models with public whole cell screening aerobic activity datasets.
Pharm Res. 2011 Aug;28(8):1859-69. doi: 10.1007/s11095-011-0413-x. Epub 2011 Mar 10.
5
Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis.
Mol Biosyst. 2010 Nov;6(11):2316-2324. doi: 10.1039/c0mb00104j. Epub 2010 Sep 8.
6
Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening.
Bioorg Med Chem. 2015 Aug 15;23(16):5087-97. doi: 10.1016/j.bmc.2014.12.031. Epub 2014 Dec 24.
7
Informatics resources for tuberculosis--towards drug discovery.
Tuberculosis (Edinb). 2012 Mar;92(2):133-8. doi: 10.1016/j.tube.2011.08.006. Epub 2011 Sep 22.
8
New approaches to tuberculosis--novel drugs based on drug targets related to toll-like receptors in macrophages.
Curr Pharm Des. 2014;20(27):4404-17. doi: 10.2174/1381612819666131118163331.
9
The Mycobacterium tuberculosis drugome and its polypharmacological implications.
PLoS Comput Biol. 2010 Nov 4;6(11):e1000976. doi: 10.1371/journal.pcbi.1000976.
10
An approach to identify potential inhibitors against multiple drug targets of .
Int J Mycobacteriol. 2019 Jul-Sep;8(3):252-261. doi: 10.4103/ijmy.ijmy_109_19.

引用本文的文献

2
Machine Learning Models for Activity: Prediction and Target Visualization.
Mol Pharm. 2022 Feb 7;19(2):674-689. doi: 10.1021/acs.molpharmaceut.1c00791. Epub 2021 Dec 29.
3
Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.
Mol Pharm. 2018 Oct 1;15(10):4346-4360. doi: 10.1021/acs.molpharmaceut.8b00083. Epub 2018 Apr 26.
5
Collaborative drug discovery for More Medicines for Tuberculosis (MM4TB).
Drug Discov Today. 2017 Mar;22(3):555-565. doi: 10.1016/j.drudis.2016.10.009. Epub 2016 Nov 22.
8
Combining Metabolite-Based Pharmacophores with Bayesian Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.
PLoS One. 2015 Oct 30;10(10):e0141076. doi: 10.1371/journal.pone.0141076. eCollection 2015.
9
Evolution of a thienopyrimidine antitubercular relying on medicinal chemistry and metabolomics insights.
Tetrahedron Lett. 2015 Jun 3;56(23):3246-3250. doi: 10.1016/j.tetlet.2015.02.129.
10
Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery.
PLoS Negl Trop Dis. 2015 Jun 26;9(6):e0003878. doi: 10.1371/journal.pntd.0003878. eCollection 2015.

本文引用的文献

1
Validating new tuberculosis computational models with public whole cell screening aerobic activity datasets.
Pharm Res. 2011 Aug;28(8):1859-69. doi: 10.1007/s11095-011-0413-x. Epub 2011 Mar 10.
3
In silico repositioning of approved drugs for rare and neglected diseases.
Drug Discov Today. 2011 Apr;16(7-8):298-310. doi: 10.1016/j.drudis.2011.02.016. Epub 2011 Mar 1.
4
Essential metabolites of Mycobacterium tuberculosis and their mimics.
mBio. 2011 Feb 1;2(1):e00301-10. doi: 10.1128/mBio.00301-10.
5
Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery.
Trends Microbiol. 2011 Feb;19(2):65-74. doi: 10.1016/j.tim.2010.10.005. Epub 2010 Dec 2.
6
Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis.
Mol Biosyst. 2010 Nov;6(11):2316-2324. doi: 10.1039/c0mb00104j. Epub 2010 Sep 8.
7
When pharmaceutical companies publish large datasets: an abundance of riches or fool's gold?
Drug Discov Today. 2010 Oct;15(19-20):812-5. doi: 10.1016/j.drudis.2010.08.010. Epub 2010 Aug 21.
8
A collaborative database and computational models for tuberculosis drug discovery.
Mol Biosyst. 2010 May;6(5):840-51. doi: 10.1039/b917766c. Epub 2010 Feb 9.
9
TB database 2010: overview and update.
Tuberculosis (Edinb). 2010 Jul;90(4):225-35. doi: 10.1016/j.tube.2010.03.010. Epub 2010 May 20.
10
Thousands of chemical starting points for antimalarial lead identification.
Nature. 2010 May 20;465(7296):305-10. doi: 10.1038/nature09107.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验