Centre de recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
Biochimie. 2011 Jan;93(1):113-9. doi: 10.1016/j.biochi.2010.05.013. Epub 2010 Jun 4.
Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians. Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position. Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition.
生物成像技术是局部测量组织切片中不同参数变化的最有效方法。这些分析在过去 20 年中越来越受到关注,使得人们能够以更低的时间和分辨率尺度观察极其复杂的生物学现象。然而,由于其分辨率和灵敏度较低,大多数技术只能针对极少数预先选择的感兴趣化合物进行分析。为了克服这些限制,需要引入新的化学成像技术,从而为生物学家和医生提供更具信息量和更灵敏的分析。两种主要的质谱方法可有效地用于生成组织切片中生物化合物的分布。基质辅助激光解吸/电离质谱法(MALDI-MS)需要在被激光照射之前将样品与基质共结晶,而对于二次离子质谱法(SIMS)实验,分析物则直接被初级离子轰击而解吸。在这两种情况下,用于解吸/电离的能量都被局部沉积 - 激光的能量沉积几十微米,离子束的能量沉积几百纳米 - 这意味着可以单独分析表面样品上的小区域。逐步分析允许在组织切片上进行光谱采集,并通过现代信息学软件对数据进行处理,以创建离子密度图,即特定离子的强度与(x,y)位置的关系图。与其他化学成像技术相比,SIMS 和 MALDI 的主要优势在于能够同时获取混合物中的大量生物化合物,并且通过飞行时间(ToF)质量分析器获得了优异的灵敏度。此外,由于没有化合物被选择性标记,因此可以在一次完整的采集中获得不同脂质类别的定位信息,数据处理是在后期进行的。