Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717.
Fluorescence Innovations, Bozeman, Montana 59718.
J Biol Chem. 2010 Aug 27;285(35):27224-27231. doi: 10.1074/jbc.M109.096875. Epub 2010 Jun 22.
Pyruvate formate-lyase-activating enzyme (PFL-AE) activates pyruvate formate-lyase (PFL) by generating a catalytically essential radical on Gly-734 of PFL. Crystal structures of unactivated PFL reveal that Gly-734 is buried 8 A from the surface of the protein in what we refer to here as the closed conformation of PFL. We provide here the first experimental evidence for an alternate open conformation of PFL in which: (i) the glycyl radical is significantly less stable; (ii) the activated enzyme exhibits lower catalytic activity; (iii) the glycyl radical undergoes less H/D exchange with solvent; and (iv) the T(m) of the protein is decreased. The evidence suggests that in the open conformation of PFL, the Gly-734 residue is located not in its buried position in the enzyme active site but rather in a more solvent-exposed location. Further, we find that the presence of the PFL-AE increases the proportion of PFL in the open conformation; this observation supports the idea that PFL-AE accesses Gly-734 for direct hydrogen atom abstraction by binding to the Gly-734 loop in the open conformation, thereby shifting the closed <--> open equilibrium of PFL to the right. Together, our results lead to a model in which PFL can exist in either a closed conformation, with Gly-734 buried in the active site of PFL and harboring a stable glycyl radical, or an open conformation, with Gly-734 more solvent-exposed and accessible to the PFL-AE active site. The equilibrium between these two conformations of PFL is modulated by the interaction with PFL-AE.
丙酮酸甲酸裂解酶激活酶 (PFL-AE) 通过在 PFL 的 Gly-734 上生成催化必需的自由基来激活丙酮酸甲酸裂解酶 (PFL)。未激活的 PFL 的晶体结构表明,Gly-734 被埋藏在蛋白质表面 8 Å 处,我们在这里将其称为 PFL 的封闭构象。我们在这里提供了 PFL 的另一种开放构象的第一个实验证据,其中:(i) 甘氨酰基自由基的稳定性显著降低;(ii) 激活的酶表现出较低的催化活性;(iii) 甘氨酰基自由基与溶剂的 H/D 交换减少;以及 (iv) 蛋白质的 Tm 降低。该证据表明,在 PFL 的开放构象中,Gly-734 残基位于酶活性位点中未被埋藏的位置,而是位于更暴露于溶剂的位置。此外,我们发现 PFL-AE 的存在增加了 PFL 处于开放构象的比例;这一观察结果支持了 PFL-AE 通过结合开放构象中的 Gly-734 环来访问 Gly-734 以进行直接氢原子抽象的想法,从而将 PFL 的封闭 <--> 开放平衡向右移动。综上所述,我们的结果提出了一个模型,其中 PFL 可以存在于封闭构象中,Gly-734 埋藏在 PFL 的活性位点中,并具有稳定的甘氨酰基自由基,或者存在于开放构象中,Gly-734 更暴露于溶剂中并可接近 PFL-AE 的活性位点。这种 PFL 的两种构象之间的平衡通过与 PFL-AE 的相互作用来调节。