Suppr超能文献

甘氨酰自由基酶的激活——丙酮酸甲酸裂解酶激活酶中催化和自由基控制的多尺度建模见解。

Activation of Glycyl Radical Enzymes─Multiscale Modeling Insights into Catalysis and Radical Control in a Pyruvate Formate-Lyase-Activating Enzyme.

机构信息

Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.

出版信息

J Chem Inf Model. 2022 Jul 25;62(14):3401-3414. doi: 10.1021/acs.jcim.2c00362. Epub 2022 Jun 30.

Abstract

Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) playing a pivotal role in the metabolism of strict and facultative anaerobes. Its activation is carried out by a PFL-activating enzyme, a member of the radical S-adenosylmethionine (rSAM) superfamily of metalloenzymes, which introduces a glycyl radical into the Gly radical domain of PFL. The activation mechanism is still not fully understood and is structurally based on a complex with a short model peptide of PFL. Here, we present extensive molecular dynamics simulations in combination with quantum mechanics/molecular mechanics (QM/MM)-based kinetic and thermodynamic reaction evaluations of a more complete activation model comprising the 49 amino acid long C-terminus region of PFL. We reveal the benefits and pitfalls of the current activation model, providing evidence that the bound peptide conformation does not resemble the bound protein-protein complex conformation with PFL, with implications for the activation process. Substitution of the central glycine with (S)- and (R)-alanine showed excellent binding of (R)-alanine over unstable binding of (S)-alanine. Radical stabilization calculations indicate that a higher radical stability of the glycyl radical might not be the sole origin of the evolutionary development of GREs. QM/MM-derived radical formation kinetics further demonstrate feasible activation barriers for both peptide and C-terminus activation, demonstrating why the crystalized model peptide system is an excellent inhibitory system for natural activation. This new evidence supports the theory that GREs converged on glycyl radical formation due to the better conformational accessibility of the glycine radical loop, rather than the highest radical stability of the formed peptide radicals.

摘要

丙酮酸甲酸裂解酶(PFL)是一种甘氨酰基自由基酶(GRE),在严格厌氧菌和兼性厌氧菌的代谢中起着关键作用。其激活是由 PFL 激活酶完成的,PFL 激活酶是自由基 S-腺苷甲硫氨酸(rSAM)金属酶超家族的成员,它将甘氨酰基自由基引入 PFL 的甘氨酰基自由基结构域。激活机制尚未完全了解,其结构基于与 PFL 的短模型肽的复合物。在这里,我们结合量子力学/分子力学(QM/MM)的动力学和热力学反应评估,进行了广泛的分子动力学模拟,以研究更完整的激活模型,该模型包括 PFL 的 49 个氨基酸长的 C 末端区域。我们揭示了当前激活模型的优点和缺点,为激活过程提供了证据,证明结合肽的构象与结合的蛋白质-蛋白质复合物构象不相似。用(S)-和(R)-丙氨酸取代中央甘氨酸表明(R)-丙氨酸具有出色的结合能力,而(S)-丙氨酸的结合不稳定。自由基稳定化计算表明,甘氨酰基自由基的更高自由基稳定性可能不是 GRE 进化发展的唯一原因。QM/MM 衍生的自由基形成动力学进一步证明了肽和 C 末端激活的可行激活势垒,这解释了为什么晶体化的模型肽系统是天然激活的优异抑制系统。这一新证据支持了这样一种理论,即 GRE 由于甘氨酰基自由基环的更好构象可及性而不是形成的肽自由基的最高自由基稳定性而集中于甘氨酰基自由基的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b04/9326890/13eb49021f80/ci2c00362_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验