Suppr超能文献

自由基 SAM 酶超家族中自由基引发的机制。

Mechanism of Radical Initiation in the Radical SAM Enzyme Superfamily.

机构信息

Department of Chemistry, Northwestern University, Evanston, Illinois, USA.

Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA; email:

出版信息

Annu Rev Biochem. 2023 Jun 20;92:333-349. doi: 10.1146/annurev-biochem-052621-090638. Epub 2023 Apr 4.

Abstract

Radical -adenosylmethionine (SAM) enzymes use a site-differentiated [4Fe-4S] cluster and SAM to initiate radical reactions through liberation of the 5'-deoxyadenosyl (5'-dAdo•) radical. They form the largest enzyme superfamily, with more than 700,000 unique sequences currently, and their numbers continue to grow as a result of ongoing bioinformatics efforts. The range of extremely diverse, highly regio- and stereo-specific reactions known to be catalyzed by radical SAM superfamily members is remarkable. The common mechanism of radical initiation in the radical SAM superfamily is the focus of this review. Most surprising is the presence of an organometallic intermediate, Ω, exhibiting an Fe-C5'-adenosyl bond. Regioselective reductive cleavage of the SAM S-C5' bond produces 5'-dAdo• to form Ω, with the regioselectivity originating in the Jahn-Teller effect. Ω liberates the free 5'-dAdo• as the catalytically active intermediate through homolysis of the Fe-C5' bond, in analogy to Co-C5' bond homolysis in B, which was once viewed as biology's choice of radical generator.

摘要

自由基 -腺苷甲硫氨酸 (SAM) 酶利用位点区分的 [4Fe-4S] 簇和 SAM 通过释放 5'-脱氧腺苷(5'-dAdo•)自由基来引发自由基反应。它们形成了最大的酶超家族,目前拥有超过 70 万个独特的序列,并且由于正在进行的生物信息学努力,它们的数量还在继续增长。自由基 SAM 超家族成员催化的反应范围非常广泛,具有高度区域和立体特异性。自由基 SAM 超家族中自由基引发的常见机制是本综述的重点。最令人惊讶的是存在有机金属中间体 Ω,其表现出 Fe-C5'-腺苷键。SAM S-C5'键的区域选择性还原裂解产生 5'-dAdo•以形成 Ω,区域选择性源于 Jahn-Teller 效应。Ω 通过 Fe-C5'键的均裂释放游离的 5'-dAdo•作为催化活性中间体,类似于 B 中 Co-C5'键的均裂,B 曾经被视为生物学选择的自由基生成剂。

相似文献

1
Mechanism of Radical Initiation in the Radical SAM Enzyme Superfamily.
Annu Rev Biochem. 2023 Jun 20;92:333-349. doi: 10.1146/annurev-biochem-052621-090638. Epub 2023 Apr 4.
2
Radical SAM enzymes: Nature's choice for radical reactions.
FEBS Lett. 2023 Jan;597(1):92-101. doi: 10.1002/1873-3468.14519. Epub 2022 Oct 27.
3
Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily.
Acc Chem Res. 2018 Nov 20;51(11):2611-2619. doi: 10.1021/acs.accounts.8b00356. Epub 2018 Oct 15.
7
Paradigm Shift for Radical S-Adenosyl-l-methionine Reactions: The Organometallic Intermediate Ω Is Central to Catalysis.
J Am Chem Soc. 2018 Jul 18;140(28):8634-8638. doi: 10.1021/jacs.8b04061. Epub 2018 Jul 6.
8
Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.
Science. 2016 May 13;352(6287):822-5. doi: 10.1126/science.aaf5327. Epub 2016 May 12.
9
Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an -Adenosylmethionine Derived Methyl Radical.
J Am Chem Soc. 2019 Oct 9;141(40):16117-16124. doi: 10.1021/jacs.9b08541. Epub 2019 Sep 26.
10
Pyruvate formate-lyase activating enzyme: The catalytically active 5'-deoxyadenosyl radical caught in the act of H-atom abstraction.
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2314696120. doi: 10.1073/pnas.2314696120. Epub 2023 Nov 13.

引用本文的文献

2
Mechanistic Insights Into Post-Translational α-Keto-β-Amino Acid Formation by a Radical S-Adenosyl Methionine Peptide Splicease.
Angew Chem Int Ed Engl. 2025 Feb 3;64(6):e202418054. doi: 10.1002/anie.202418054. Epub 2025 Jan 10.
3
Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes.
Biochemistry. 2024 Dec 17;63(24):3161-3183. doi: 10.1021/acs.biochem.4c00518. Epub 2024 Dec 3.
5
Discovery of a New Class of Aminoacyl Radical Enzymes Expands Nature's Known Radical Chemistry.
J Am Chem Soc. 2024 Oct 30;146(43):29645-29655. doi: 10.1021/jacs.4c10348. Epub 2024 Oct 11.
6
Proteomic strategies to interrogate the Fe-S proteome.
Biochim Biophys Acta Mol Cell Res. 2024 Oct;1871(7):119791. doi: 10.1016/j.bbamcr.2024.119791. Epub 2024 Jun 25.
7
Darobactin Substrate Engineering and Computation Show Radical Stability Governs Ether versus C-C Bond Formation.
J Am Chem Soc. 2024 May 22;146(20):14328-14340. doi: 10.1021/jacs.4c03994. Epub 2024 May 10.

本文引用的文献

1
RadicalSAM.org: A Resource to Interpret Sequence-Function Space and Discover New Radical SAM Enzyme Chemistry.
ACS Bio Med Chem Au. 2022 Feb 16;2(1):22-35. doi: 10.1021/acsbiomedchemau.1c00048. Epub 2021 Dec 17.
3
l-methionine Adenosylation: Radical Intermediates and the Catalytic Competence of the 5'-Deoxyadenosyl Radical.
J Am Chem Soc. 2022 Mar 23;144(11):5087-5098. doi: 10.1021/jacs.1c13706. Epub 2022 Mar 8.
4
-Adenosyl-l-ethionine is a Catalytically Competent Analog of -Adenosyl-l-methione (SAM) in the Radical SAM Enzyme HydG.
Angew Chem Int Ed Engl. 2021 Feb 23;60(9):4666-4672. doi: 10.1002/anie.202014337. Epub 2020 Dec 1.
7
Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity.
J Biol Chem. 2020 Aug 14;295(33):11513-11528. doi: 10.1074/jbc.REV120.012784. Epub 2020 Jun 16.
9
Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an -Adenosylmethionine Derived Methyl Radical.
J Am Chem Soc. 2019 Oct 9;141(40):16117-16124. doi: 10.1021/jacs.9b08541. Epub 2019 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验