Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
J Proteome Res. 2009 Oct;8(10):4823-34. doi: 10.1021/pr900561g.
Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (K(ATP)) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 K(ATP) channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved >800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. K(ATP) channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the K(ATP) channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a K(ATP) channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the K(ATP) channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by K(ATP) channel deletion, establishing a systems approach that predicts outcome at a presymptomatic stage.
预测疾病易感性需要在明显症状出现之前检测到适应性不良的特征。一个典型的例子是心脏 ATP 敏感性 K+ (K(ATP))通道病,其疾病易感性的潜在底物仍有待确定。为了解决分子病理生物学问题,即使是针对单个基因缺陷,也需要一个系统平台来可靠地诊断疾病易感性。在这里,高通量蛋白质组学分析与网络生物学相结合,以解码 Kir6.2 K(ATP) 通道孔缺失的后果。差异二维凝胶电泳可重复性地从无症状野生型和 Kir6.2 敲除对照的心脏中解析出 >800 种蛋白质。K(ATP) 通道消融重塑了心脏蛋白质组,显著改变了 71 个蛋白质斑点,其中 102 个独特的身份在经过混合线性离子阱四极杆-Orbitrap 串联质谱分析后被分配。本体论注释将 K(ATP) 通道依赖性蛋白质组分为主要的生物能量模块(63 个解析的身份),此外还有一些集中的信号分子(6)、氧化还原酶(8)、伴侣蛋白(6)、参与分解代谢的蛋白质(6)、细胞结构(8)和转录和翻译(5)。蛋白质相互作用映射结合表达水平的变化,将 K(ATP) 通道相关亚蛋白质组定位在一个非随机无标度网络中。对 K(ATP) 通道缺陷环境的全面评估验证了其对代谢途径的主要影响,并揭示了与心血管疾病相关的标志物的过度表达。在 Kir6.2 敲除小鼠中,逐渐施加应激条件会导致明显的结构性和功能性心肌缺陷,降低存活率,并验证了疾病易感性的预测。蛋白质组图谱因此提供了 K(ATP) 通道缺失诱导的心脏分子重塑的整体视图,建立了一种在无症状阶段预测结果的系统方法。