Suppr超能文献

ATP 敏感性钾通道基因敲除诱导心脏蛋白质组重构,预测易患心脏病。

ATP-sensitive K+ channel knockout induces cardiac proteome remodeling predictive of heart disease susceptibility.

机构信息

Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.

出版信息

J Proteome Res. 2009 Oct;8(10):4823-34. doi: 10.1021/pr900561g.

Abstract

Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (K(ATP)) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 K(ATP) channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved >800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. K(ATP) channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the K(ATP) channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a K(ATP) channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the K(ATP) channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by K(ATP) channel deletion, establishing a systems approach that predicts outcome at a presymptomatic stage.

摘要

预测疾病易感性需要在明显症状出现之前检测到适应性不良的特征。一个典型的例子是心脏 ATP 敏感性 K+ (K(ATP))通道病,其疾病易感性的潜在底物仍有待确定。为了解决分子病理生物学问题,即使是针对单个基因缺陷,也需要一个系统平台来可靠地诊断疾病易感性。在这里,高通量蛋白质组学分析与网络生物学相结合,以解码 Kir6.2 K(ATP) 通道孔缺失的后果。差异二维凝胶电泳可重复性地从无症状野生型和 Kir6.2 敲除对照的心脏中解析出 >800 种蛋白质。K(ATP) 通道消融重塑了心脏蛋白质组,显著改变了 71 个蛋白质斑点,其中 102 个独特的身份在经过混合线性离子阱四极杆-Orbitrap 串联质谱分析后被分配。本体论注释将 K(ATP) 通道依赖性蛋白质组分为主要的生物能量模块(63 个解析的身份),此外还有一些集中的信号分子(6)、氧化还原酶(8)、伴侣蛋白(6)、参与分解代谢的蛋白质(6)、细胞结构(8)和转录和翻译(5)。蛋白质相互作用映射结合表达水平的变化,将 K(ATP) 通道相关亚蛋白质组定位在一个非随机无标度网络中。对 K(ATP) 通道缺陷环境的全面评估验证了其对代谢途径的主要影响,并揭示了与心血管疾病相关的标志物的过度表达。在 Kir6.2 敲除小鼠中,逐渐施加应激条件会导致明显的结构性和功能性心肌缺陷,降低存活率,并验证了疾病易感性的预测。蛋白质组图谱因此提供了 K(ATP) 通道缺失诱导的心脏分子重塑的整体视图,建立了一种在无症状阶段预测结果的系统方法。

相似文献

4
K(ATP) channel-dependent metaboproteome decoded: systems approaches to heart failure prediction, diagnosis, and therapy.
Cardiovasc Res. 2011 May 1;90(2):258-66. doi: 10.1093/cvr/cvr046. Epub 2011 Feb 14.
5
K channel dependent heart multiome atlas.
Sci Rep. 2022 May 5;12(1):7314. doi: 10.1038/s41598-022-11323-4.
6
8
Unique properties of the ATP-sensitive K⁺ channel in the mouse ventricular cardiac conduction system.
Circ Arrhythm Electrophysiol. 2011 Dec;4(6):926-35. doi: 10.1161/CIRCEP.111.964643. Epub 2011 Oct 9.
9
KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart.
Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1706-13. doi: 10.1152/ajpheart.01305.2006. Epub 2006 Dec 22.
10
Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1.
Circ Res. 2008 Dec 5;103(12):1458-65. doi: 10.1161/CIRCRESAHA.108.178186. Epub 2008 Oct 30.

引用本文的文献

1
Infliximab Limits Injury in Myocardial Infarction.
J Am Heart Assoc. 2024 May 7;13(9):e032172. doi: 10.1161/JAHA.123.032172. Epub 2024 May 3.
2
K channel dependent heart multiome atlas.
Sci Rep. 2022 May 5;12(1):7314. doi: 10.1038/s41598-022-11323-4.
4
Cardiopoietic stem cell therapy restores infarction-altered cardiac proteome.
NPJ Regen Med. 2020 Mar 12;5:5. doi: 10.1038/s41536-020-0091-6. eCollection 2020.
6
Disrupting KATP channels diminishes the estrogen-mediated protection in female mutant mice during ischemia-reperfusion.
Clin Proteomics. 2014 May 6;11(1):19. doi: 10.1186/1559-0275-11-19. eCollection 2014.
7
Effects of hypertension and exercise on cardiac proteome remodelling.
Biomed Res Int. 2014;2014:634132. doi: 10.1155/2014/634132. Epub 2014 Apr 27.
8
9
Autoimmunoreactive IgGs from patients with postural orthostatic tachycardia syndrome.
Proteomics Clin Appl. 2012 Dec;6(11-12):615-25. doi: 10.1002/prca.201200049. Epub 2012 Nov 8.
10
Systems proteomics for translational network medicine.
Circ Cardiovasc Genet. 2012 Aug 1;5(4):478. doi: 10.1161/CIRCGENETICS.110.958991.

本文引用的文献

1
A systems approach to prion disease.
Mol Syst Biol. 2009;5:252. doi: 10.1038/msb.2009.10. Epub 2009 Mar 24.
4
Getting to the heart of proteomics.
N Engl J Med. 2009 Jan 29;360(5):532-4. doi: 10.1056/NEJMcibr0808487.
6
Energy metabolism in heart failure and remodelling.
Cardiovasc Res. 2009 Feb 15;81(3):412-9. doi: 10.1093/cvr/cvn301. Epub 2008 Nov 5.
7
Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart.
Science. 2008 Sep 12;321(5895):1493-5. doi: 10.1126/science.1158554.
8
Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.
Stem Cells. 2008 Oct;26(10):2644-53. doi: 10.1634/stemcells.2008-0187. Epub 2008 Jul 31.
10
Therapeutic targeting: a crucible for individualized medicine.
Clin Pharmacol Ther. 2008 May;83(5):651-4. doi: 10.1038/clpt.2008.65.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验