Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702-1201, USA.
Protein Sci. 2010 Sep;19(9):1649-61. doi: 10.1002/pro.445.
The antiviral lectin scytovirin (SVN) contains a total of five disulfide bonds in two structurally similar domains. Previous reports provided contradictory results on the disulfide pairing in each individual domain, and we have now re-examined the disulfide topology. N-terminal sequencing and mass spectrometry were used to analyze proteolytic fragments of native SVN obtained at acidic pH, yielding the assignment as Cys7-Cys55, Cys20-Cys32, Cys26-Cys38, Cys68-Cys80, and Cys74-Cys86. We also analyzed the N-terminal domain of SVN (SD1, residues 1-48) prepared by expression/oxidative folding of the recombinant protein and by chemical synthesis. The disulfide pairing in the chemically synthesized SD1 was forced into predetermined topologies: SD1A (Cys20-Cys26, Cys32-Cys38) or SD1B (Cys20-Cys32, Cys26-Cys38). The topology of native SVN was found to be in agreement with the SD1B and the one determined for the recombinant SD1 domain. Although the two synthetic forms of SD1 were distinct when subjected to chromatography, their antiviral properties were indistinguishable, having low nM activity against HIV. Tryptic fragments, the "cystine clusters" [Cys20-Cys32/Cys26-Cys38; SD1] and [Cys68-Cys80/Cys74-C-86; SD2], were found to undergo rapid disulfide interchange at pH 8. This interchange resulted in accumulation of artifactual fragments in alkaline pH digests that are structurally unrelated to the original topology, providing a rational explanation for the differences between the topology reported herein and the one reported earlier (Bokesh et al., Biochemistry 2003;42:2578-2584). Our observations emphasize the fact that proteins such as SVN, with disulfide bonds in close proximity, require considerable precautions when being fragmented for the purpose of disulfide assignment.
抗病毒凝集素 scytovirin(SVN)在两个结构相似的结构域中总共含有五个二硫键。之前的报道对每个单独结构域中二硫键的配对提供了相互矛盾的结果,我们现在重新检查了二硫键的拓扑结构。使用 N 端测序和质谱分析在酸性 pH 值下获得的天然 SVN 的蛋白水解片段,得出的分配为 Cys7-Cys55、Cys20-Cys32、Cys26-Cys38、Cys68-Cys80 和 Cys74-Cys86。我们还分析了通过表达/氧化折叠重组蛋白和化学合成制备的 SVN 的 N 端结构域(残基 1-48)。化学合成的 SD1 的二硫键配对被强制进入预定的拓扑结构:SD1A(Cys20-Cys26、Cys32-Cys38)或 SD1B(Cys20-Cys32、Cys26-Cys38)。天然 SVN 的拓扑结构与 SD1B 和重组 SD1 结构域的确定结果一致。尽管在进行色谱分析时,两种合成形式的 SD1 明显不同,但它们的抗病毒特性无法区分,对 HIV 的活性均为低 nM。胰蛋白酶片段,“半胱氨酸簇”[Cys20-Cys32/Cys26-Cys38;SD1]和[Cys68-Cys80/Cys74-C-86;SD2],在 pH8 时发现会迅速发生二硫键交换。这种交换导致碱性 pH 消化物中积累了与原始拓扑结构结构无关的人为片段,为本文报告的拓扑结构与早期报告的拓扑结构之间的差异提供了合理的解释(Bokesh 等人,生物化学 2003;42:2578-2584)。我们的观察结果强调了这样一个事实,即 SVN 等具有紧密相邻二硫键的蛋白质在为二硫键分配而进行碎片化时需要相当大的注意。