Suppr超能文献

DNA测序凝胶电泳过程中的相邻核苷酸相互作用。

Neighboring nucleotide interactions during DNA sequencing gel electrophoresis.

作者信息

Bowling J M, Bruner K L, Cmarik J L, Tibbetts C

机构信息

Department of Mechanical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37232.

出版信息

Nucleic Acids Res. 1991 Jun 11;19(11):3089-97. doi: 10.1093/nar/19.11.3089.

Abstract

Electrophoretic separation of oligonucleotides in denaturing polyacrylamide gels is primarily a function of length-dependent mobility. The 3' terminal nucleotide sequence of the oligonucleotide is a significant, secondary determinant of mobility and separation. Oligomers with 3'-ddT migrate more slowly than expected on the basis of length alone, and thus are better separated from the preceding, shorter oligomers in the sequencing ladder. Oligomers with 3'-ddC are relatively faster than expected, and are therefore less separated. At the 3' penultimate position, -dC- increases and -dT- reduces separation. Purines at the 3' terminal or penultimate positions of oligonucleotides affect separation less than the pyrimidines. These results suggest specific interactions among neighboring nucleotides with important effects on the conformation of oligonucleotides during electrophoresis. These interactions are compared to compression artifacts, which represent more extreme anomalies of length-dependent separation of oligonucleotides. Knowledge of base-specific effects on electrophoretic behavior of DNA oligomers supplements the usual information available for determination of sequences; additionally it provides an avenue to thermodynamic and hydrodynamic investigations of DNA structure.

摘要

变性聚丙烯酰胺凝胶中寡核苷酸的电泳分离主要取决于长度依赖性迁移率。寡核苷酸的3'末端核苷酸序列是迁移率和分离的一个重要的次要决定因素。具有3'-ddT的寡聚物在仅基于长度的情况下迁移速度比预期慢,因此在测序梯中能更好地与前面较短的寡聚物分离。具有3'-ddC的寡聚物相对比预期快,因此分离度较小。在3'倒数第二个位置,-dC-增加而-dT-减少分离度。寡核苷酸3'末端或倒数第二个位置的嘌呤对分离的影响小于嘧啶。这些结果表明相邻核苷酸之间存在特定相互作用,对电泳过程中寡核苷酸的构象有重要影响。将这些相互作用与压缩假象进行比较,压缩假象代表寡核苷酸长度依赖性分离的更极端异常情况。了解碱基特异性对DNA寡聚物电泳行为的影响补充了用于确定序列的常规信息;此外,它为DNA结构的热力学和流体动力学研究提供了一条途径。

相似文献

1
Neighboring nucleotide interactions during DNA sequencing gel electrophoresis.
Nucleic Acids Res. 1991 Jun 11;19(11):3089-97. doi: 10.1093/nar/19.11.3089.
3
Contribution of secondary structure to DNA mobility in capillary gels.
Electrophoresis. 1993 May-Jun;14(5-6):502-8. doi: 10.1002/elps.1150140177.
4
Prediction of migration behavior of oligonucleotides in capillary gel electrophoresis.
J Chromatogr. 1992 Feb 28;593(1-2):297-303. doi: 10.1016/0021-9673(92)80298-9.
5
Denaturing polyacrylamide gel electrophoresis.
Curr Protoc Nucleic Acid Chem. 2001 May;Appendix 3:Appendix 3B. doi: 10.1002/0471142700.nca03bs00.
6
Microelectrophoresis for the separation of DNA fragments.
Electrophoresis. 1992 Aug;13(8):512-20. doi: 10.1002/elps.11501301107.
9
Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE).
J Vis Exp. 2009 Oct 29(32):1485. doi: 10.3791/1485.
10
Denaturing gel electrophoresis for sequencing.
Curr Protoc Mol Biol. 2001 May;Chapter 7:Unit7.6. doi: 10.1002/0471142727.mb0706s16.

引用本文的文献

1
From sequence to information.
Philos Trans R Soc Lond B Biol Sci. 2020 Dec 21;375(1814):20190448. doi: 10.1098/rstb.2019.0448. Epub 2020 Nov 2.
2
Effect of the matrix on DNA electrophoretic mobility.
J Chromatogr A. 2009 Mar 6;1216(10):1917-29. doi: 10.1016/j.chroma.2008.11.090. Epub 2008 Dec 6.
3
Digital detection of genetic mutations using SPC-sequencing.
Genome Res. 2004 Feb;14(2):296-300. doi: 10.1101/gr.1344104.
4
Design and synthesis of a photocleavable biotinylated nucleotide for DNA analysis by mass spectrometry.
Nucleic Acids Res. 2004 Jan 26;32(2):535-41. doi: 10.1093/nar/gkh198. Print 2004.
5
A photocleavable fluorescent nucleotide for DNA sequencing and analysis.
Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):414-9. doi: 10.1073/pnas.242729199. Epub 2003 Jan 6.
7
DNA sequencing using biotinylated dideoxynucleotides and mass spectrometry.
Nucleic Acids Res. 2001 Nov 1;29(21):E104-4. doi: 10.1093/nar/29.21.e104.
8
Opening of the extraordinarily stable mini-hairpin d(GCGAAGC).
Nucleic Acids Res. 1997 Nov 15;25(22):4608-13. doi: 10.1093/nar/25.22.4608.
9
An adaptive, object oriented strategy for base calling in DNA sequence analysis.
Nucleic Acids Res. 1993 Sep 25;21(19):4530-40. doi: 10.1093/nar/21.19.4530.
10
Assignment of position-specific error probability to primary DNA sequence data.
Nucleic Acids Res. 1994 Apr 11;22(7):1272-80. doi: 10.1093/nar/22.7.1272.

本文引用的文献

1
Self-trapping and anomalous dispersion of DNA in electrophoresis.
Phys Rev Lett. 1987 Jun 8;58(23):2428-2431. doi: 10.1103/PhysRevLett.58.2428.
2
Electrophoresis in strong fields.
Phys Rev A Gen Phys. 1986 Mar;33(3):2047-2055. doi: 10.1103/physreva.33.2047.
3
Mobility of DNA in gel electrophoresis.
Biopolymers. 1982 Nov;21(11):2315-6. doi: 10.1002/bip.360211116.
4
Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule?
Biopolymers. 1982 May;21(5):995-7. doi: 10.1002/bip.360210511.
6
DNA sequencing with direct blotting electrophoresis.
EMBO J. 1984 Dec 1;3(12):2905-9. doi: 10.1002/j.1460-2075.1984.tb02230.x.
7
Sequence diversity among related genes for recognition of specific targets in DNA molecules.
J Mol Biol. 1983 May 5;166(1):1-19. doi: 10.1016/s0022-2836(83)80047-3.
8
Sequence analysis of short DNA fragments.
Methods Enzymol. 1980;65(1):620-38.
9
Improved estimation of secondary structure in ribonucleic acids.
Nat New Biol. 1973 Nov 14;246(150):40-1. doi: 10.1038/newbio246040a0.
10
Fluorescence detection in automated DNA sequence analysis.
Nature. 1986;321(6071):674-9. doi: 10.1038/321674a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验