Suppr超能文献

模拟在厌氧/缺氧/好氧强化生物除磷工艺中相关的生物体的种群动态和代谢多样性。

Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes.

机构信息

REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

出版信息

Water Res. 2010 Aug;44(15):4473-86. doi: 10.1016/j.watres.2010.06.017. Epub 2010 Jun 12.

Abstract

In this study, enhanced biological phosphorus removal (EBPR) metabolic models are expanded in order to incorporate the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) under sequential anaerobic/anoxic/aerobic conditions, which are representative of most full-scale EBPR plants. Since PAOs and GAOs display different denitrification tendencies, which is dependent on the phylogenetic identity of the organism, the model was separated into six distinct biomass groups, constituting Accumulibacter Types I and II, as well as denitrifying and non-denitrifying Competibacter and Defluviicoccus GAOs. Denitrification was modelled as a multi-step process, with nitrate (NO(3)), nitrite (NO(2)), nitrous oxide (N(2)O) and di-nitrogen gas (N(2)) being the primary components. The model was calibrated and validated using literature data from enriched cultures of PAOs and GAOs, obtaining a good description of the observed biochemical transformations. A strong correlation was observed between Accumulibacter Types I and II, and nitrate-reducing and non-nitrate-reducing PAOs, respectively, where the abundance of each PAO subgroup was well predicted by the model during an acclimatization period from anaerobic-aerobic to anaerobic-anoxic conditions. Interestingly, a strong interdependency was observed between the anaerobic, anoxic and aerobic kinetic parameters of PAOs and GAOs. This could be exploited when metabolic models are calibrated, since all of these parameters should be changed by an identical factor from their default value. Factors that influence these kinetic parameters include the fraction of active biomass, relative aerobic/anoxic fraction and the ratio of acetyl-CoA to propionyl-CoA. Employing a metabolic approach was found to be advantageous in describing the performance and population dynamics in such complex microbial ecosystems.

摘要

在这项研究中,扩展了增强型生物除磷(EBPR)代谢模型,以便在顺序厌氧/缺氧/好氧条件下纳入聚磷酸盐积累菌(PAOs)和糖原积累菌(GAOs)之间的竞争,这是大多数实际规模的 EBPR 工厂的代表条件。由于 PAOs 和 GAOs 表现出不同的反硝化趋势,这取决于生物体的系统发育身份,因此该模型分为六个不同的生物质组,包括 Accumulibacter 类型 I 和 II,以及反硝化和非反硝化 Competibacter 和 Defluviicoccus GAOs。反硝化被建模为一个多步骤过程,硝酸盐(NO(3))、亚硝酸盐(NO(2))、一氧化二氮(N(2)O)和二氮气体(N(2))是主要成分。该模型使用从 PAOs 和 GAOs 富集培养物中获得的文献数据进行了校准和验证,对观察到的生化转化进行了很好的描述。在从厌氧-好氧到厌氧-缺氧条件的适应期内,Accumulibacter 类型 I 和 II 与硝酸盐还原和非硝酸盐还原 PAOs 之间观察到很强的相关性,模型很好地预测了每个 PAO 亚组的丰度。有趣的是,PAOs 和 GAOs 的厌氧、缺氧和好氧动力学参数之间存在很强的相互依存关系。当对代谢模型进行校准时,可以利用这一点,因为从默认值更改所有这些参数都应该通过相同的因子进行更改。影响这些动力学参数的因素包括活性生物质的分数、相对好氧/缺氧分数以及乙酰辅酶 A 与丙酰辅酶 A 的比值。事实证明,采用代谢方法在描述这种复杂微生物生态系统的性能和种群动态方面具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验