Suppr超能文献

使用增强和增强后病变的归一化脑血容量全瘤直方图分析鉴别多形性胶质母细胞瘤、单发转移性肿瘤和淋巴瘤。

Differentiation among glioblastoma multiforme, solitary metastatic tumor, and lymphoma using whole-tumor histogram analysis of the normalized cerebral blood volume in enhancing and perienhancing lesions.

机构信息

Department of Diagnostic Radiology, Ajou University School of Medicine, Mt. 5 Woncheon-dong, Yeongtong-gu, Suwon, Gyeonggi-do, Korea.

出版信息

AJNR Am J Neuroradiol. 2010 Oct;31(9):1699-706. doi: 10.3174/ajnr.A2161. Epub 2010 Jun 25.

Abstract

BACKGROUND AND PURPOSE

The histogram method has been shown to demonstrate heterogeneous morphologic features of tumor vascularity. This study aimed to determine whether whole-tumor histogram analysis of the normalized CBV for contrast-enhancing lesions and perienhancing lesions can differentiate among GBMs, SMTs, and lymphomas.

MATERIALS AND METHODS

Fifty-nine patients with histopathologically confirmed GBMs (n = 28), SMTs (n = 22), or lymphomas (n = 12) underwent conventional MR imaging and dynamic susceptibility contrast-enhanced imaging before surgery. Histogram distribution of the normalized CBV was obtained from whole-tumor voxels in contrast-enhancing lesions and perienhancing lesions. The HW, PHP, and MV were determined from histograms. One-way ANOVA was used initially to test the overall equality of mean values for each type of tumor. Subsequently, posttest multiple comparisons were performed.

RESULTS

For whole-tumor histogram analyses for contrast-enhancing lesions, only PHP could differentiate among GBMs (4.79 ± 1.31), SMTs (3.32 ± 1.10), and lymphomas (2.08 ± 0.54). The parameters HW and MV were not significantly different between GBMs and SMTs, whereas the 2 histogram parameters were significantly higher in GBMs and SMTs compared with lymphomas. For the analyses of perienhancing lesions, only MV could differentiate among GBMs (1.90 ± 0.26), SMTs (0.80 ± 0.21), and lymphomas (1.27 ± 0.34). HW and PHP were not significantly different between SMTs and lymphomas.

CONCLUSIONS

Using a whole-tumor histogram analysis of normalized CBV for contrast-enhancing lesions and perienhancing lesions facilitates differentiation of GBMs, SMTs and lymphomas.

摘要

背景与目的

直方图方法已被证明可以显示肿瘤血管形态的异质性特征。本研究旨在确定对比增强病变和周边增强病变的全肿瘤直方图分析是否可以区分胶质母细胞瘤(GBM)、间变性星形细胞瘤(SMT)和淋巴瘤。

材料与方法

59 例经组织病理学证实的 GBM(n=28)、SMT(n=22)或淋巴瘤(n=12)患者在术前均进行了常规磁共振成像和动态对比增强磁共振成像。从对比增强病变和周边增强病变的全肿瘤体素中获得归一化 CBV 的直方图分布。从直方图中确定 HW、PHP 和 MV。首先使用单因素方差分析检验每种肿瘤类型的平均值总体是否相等。然后进行了事后多重比较。

结果

对于对比增强病变的全肿瘤直方图分析,只有 PHP 可以区分 GBM(4.79±1.31)、SMT(3.32±1.10)和淋巴瘤(2.08±0.54)。HW 和 MV 在 GBM 和 SMT 之间没有显著差异,而这 2 个直方图参数在 GBM 和 SMT 中明显高于淋巴瘤。对于周边增强病变的分析,只有 MV 可以区分 GBM(1.90±0.26)、SMT(0.80±0.21)和淋巴瘤(1.27±0.34)。HW 和 PHP 在 SMT 和淋巴瘤之间没有显著差异。

结论

使用对比增强病变和周边增强病变的全肿瘤直方图分析有助于区分 GBM、SMT 和淋巴瘤。

相似文献

2
Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors.
Eur J Radiol. 2006 Jun;58(3):394-403. doi: 10.1016/j.ejrad.2005.12.032. Epub 2006 Mar 9.
4
Evaluation of Perienhancing Area in Differentiation between Glioblastoma and Solitary Brain Metastasis.
Asian Pac J Cancer Prev. 2020 Sep 1;21(9):2525-2530. doi: 10.31557/APJCP.2020.21.9.2525.

引用本文的文献

4
Mapping Spatiotemporal Heterogeneity in Tumor Profiles by Integrating High-Throughput Imaging and Omics Analysis.
ACS Omega. 2023 Feb 7;8(7):6126-6138. doi: 10.1021/acsomega.2c06659. eCollection 2023 Feb 21.
6
Image-Based Differentiation of Intracranial Metastasis From Glioblastoma Using Automated Machine Learning.
Front Neurosci. 2022 May 12;16:855990. doi: 10.3389/fnins.2022.855990. eCollection 2022.

本文引用的文献

6
Low-grade gliomas in adults.
Oncologist. 2006 Jun;11(6):681-93. doi: 10.1634/theoncologist.11-6-681.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验